One Dimensional Charge Fluctuation-
Mediated Attraction In High-Tc
Superconductor YBa;Cu,0,..

Seiichi SEKI



COTEXTURE 63
No. 9 (1991)

One Dimensional Charge Fluctuation-
Mediated Attraction In High-Tc
Superconductor YBa,Cu,O,

Seiichi SEKI

Abstract

We investigate the contribution of the O(4) levels
toward the charge fluctuation-mediated attraction V
bétween charge carriers, the fluctuation occuring in the
Cu(1)-0(1)-O(4) linear chains. The magnitude of V is
sensitive to the hole concentration #. in the chains, and
the presence of the O(4) levels induces comparatively
large values of V in a certain range of #..

§1 Introduction

To account for the scaled up values of the superconducting
critical temperature in Cu-O based compounds, many authors
have proposed various mechanisms including, for example, the
excition,’—* plasmon,>-% and antiferromagnetic spin fluctuation”
mediated pairing models, along with the conventional phonon-
model. However, in spite of such accumulated investigations it
appears that much work has still to be done before a detailed
understanding of the phenomenon.

At its low temperature phase, the crystal structure of high-T,
compound YBa,Cu;0,-x indicates the simultaneous presence of
the 1D Cu(1)-O(1) chains and 2D Cu(2)-0(2,3) planes, Cu(l)
and Cu(2) being bridged with O(4) atoms.®-* Although the
current is mainly carried by holes on the 2D Cu-O planes, the
phenomenon of high-7. superconductivity is observed only in -
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the presence of the 1D Cu-O chains. This fact may be of
primary importance in understanding the large 7. and motivates
us to study the relation of such a structure with the occurrence
of superconductivity. The purpose of this paper is to investigate
the contribution of the O(4) levels toward enhancing the effective
attraction between charge carriers, the attraction being caused
by the charge fluctuations in the 1D Cu-O chains. Although the
charge fluctuation-mediated pairing mechanisms have already
been discussed in a number of papers in the context of the
excition, plasmon, or charge transfer mediated pairing model,®
the contribution of the O(4) levels has not yet been studied in
detail in the same context. For example, Varma et al® have
discussed the attraction due to scattering of electrons from
excitonic resonances which occur on the current sheets (ie. on
the 2D Cu(2)-0(2,3) planes) and be indifferent to the O(4) levels.
In this paper we aim at studying how the presence of the 0@
levels coupled to the levels in the 1D Du(1)-O(1) chains modifies
the effective attraction, depending on the position of the Fermi
enery in the chains.

The O(4) ions play the role of the junction between Cu(l) and
Cu(2). However the Cu(1)-O(4) distance (L. 8A) is much shorter
than the Cu(2)-O(4) distance (2.3A), and this structural feature
makes the bonding of Cu(1l) and O(4) stronger than that of Cu 2
and O(4). Thus in discussion of the density of states (DOS) it
would be a reasonable starting point to regard that the 1D Cu-O
chains are composed of Cu(l), O(1) and O(4) ions.!® Ina tight
binding picture, the DOS of such a Cu(1)-O(1)-O(4) linear chain
is described by the three subbands, i.e. the bonding and antibond-
ing subbands and the narrow oxygen-dominant (OD) subband.
The bonding and antibonding bands are mainly constructed from
the Cu(l) and O(1) levels, and both of them show the large 1D
dispersion. On the other hand, the OD band results from the
coupling of the O(4) and O(1) levels via the Cu(l) sites and/or
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from the direct hopping ¢ between the nearest neighbor O(4) and
‘O(1) sites. If the direct hopping is neglected, the OD bandwidth
W, is approximately equal to the difference between the site-
potential energies at O(1) and O(4), 4E=|Eou—Eocs|, while for
the vanishing 4E, W, is of the order of f. It is reported that
the electron occupation number of the p-state at O(1) is slightly
smaller than that at O(4).> The difference is about 0.03 per
ion, and this suggests the non-vanishing 4E(0.2eV). # is also
considered to be of the same order as 4E.

For the present material, the bonding and antibonding bands
are entirely occupied and unoccupied by electrons, respectively.
‘The OD band is also fully occupied by electrons, but, it appears
that the occupation is not complete. Thus the Fermi energy may
be near the top of the OD band whose lower and upper edges
display the square-root singularity (refer the later discussion),
suggesting the large DOS (of the 1D Cu-O chains) at the Fermi
energy. This appears to be consistent with the electronic
structure calculated by Mattheiss et al®. Indeed their calculation
indicates that the oxygen levels in the 1D Cu-O chains yield a
sharp peak in the DOS near the Fermi enery. In such a situa-
tion, the intraband and interband transitions are very sensitive
to the position of the Fermi enery Er in the chains. This implies
the conspicuous Er-dependence of the attraction. We also aim
at invesigating such a dependence, in addition to a study of the
‘0(4) levels.

§2 Hole states in the single Cu(2)-0(23) plane

Before discussing the charge fluctuations in the Cu(1)-O(1)-
‘O(4) linear 'chains, we briefly consider the hole states in the
single Cu(2)-0(2,3) plane model. In the framework of a tight-
binding picture the Hamiltonian can be expressed as

H= H,+ Hcoulomb , 2.1)
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with the one-particle and Coulomb repulsion terms H, and
Heoulomb given by

Hy=E., Zisdie"'dts +Eo, a stamsams'l‘Eo, Znsbns"'bns
+ta/2 Z <tm>s (dir"'ams"'ho C-) +tb/2 2 <tn>s (dts+bns+ h. C-)
+tab/4 Z <mn>s (ama+bns+h- c.) y 2. 2)

and

Hcoulomb= Uet/2 Y 4sM1s%ns_5% 4+ Uo:c/ 2 Y imsPms®Hm—s®
+ Uoz/z DinshnsMn_s®+ Ve Di<im> DstszMis1%msez®
+ Ve X<tn> YlstssMis: *nss® 2.3)

Here the operators di*, ams* and bas* create s-spin holes at Cu(2),
0(2) and O(3) sites, respectively, and the symbol < > stands
for a pair of nearest-neighbor sites. U,, and U,: represent the
magnitudes of the Coulomb repulsions at Cu(2) and O(2,3) sites,
and V. is the intersite Coulomb repulsion between the neighbor-
ing Cu and O holes with #4% #zs® and #.:® being the hole
number operators at Cu(2), O(2) and O(3) sites, respectively.
When texf and E+E,,» the system is in the inplane anisotropic
state which is realized in the superconducting phase of the
material we are considering. Fourier-transform of H, leads to

Hy=E.. stdks+dks+Eo, a staks+aks+Eo, 5 Dixsbustrs
+ta Yirs COS ko (drs*ars+h. c.) +1s Xiks COS ko (drs*bos+h. c.)
tab Yiks COS ko cOS kp (avs+ 1. c.) 2.9

where we have written k.d, and k,d, simply as k. and k,, with
the Cu(2)-O(2) and Cu(2)-O(3) distances d, and d,. The x and
y components of a 2D momentum % are confined to the first
Brillouin zone, —n/2<k., k,<7/2. The unperturbed Hamiltonian
H, can be diagonalized by the linear transformation

Qus* (k) dis*

@t (B) | =U | ars* , (2.5)
Qss* () brs*



67

and the diagonalized H, is given as
Hy=X 1,2, Ei(R)Qjs* (B)Qis(k) , (E1<E.<E;) (2.6)
with keeping usual anticommutation rules

[Qis(B) , Qss* (B')]+=040kk, (2.7a)
[Qis(R), Qis(R))+=0. 2.7b)

Thus we have the three subbands separated from each other by
the finite energy gaps. In the following discussion, the subband
specified by the energy E; in Eq. (2.6) is called the E; band.
Then the E, and E; bands correspond to the bonding and anti-
bonding bands constructed from both the Cu(2) and 0(2,3) levels,
while the E, band is mainly due to the O(2,3) levels and its
bandwidth is of the order of fss. It is a straightforward exercise
to derive the equation which determines the eigenenergies E; (k)
for H,

Z(El k) = (E—Eﬂl:) (E—Eo, a) (E—EO’ b) _sz (E_E07 b)
—git (E—E,, o) — [ (E—Ecu) + 21 xgrhs]
=(E—E,(k)) (E—E:(k)) (E—Es(k))=0, (2.8)

with fe=te cOS ks, gr=0s COS ky, hx=ap COS kz cOs k, and E=E;(k).
At the present stage we apply mean field theoretic treatment

to the Coulomb repulsion terms given by (2.3). This is con-

veniently performed by making use of the transformation (2.5)

dks+ Qla+ (k)
Axs™ =W st+ (k) N (W= U=l) (2- 9)
brs* Qss* (B)

from which we find the following expressions for the self-
energies due to the Coulomb repulsions

Ueu/2 D1snis®ns-s¢= Us/2 Skesurs Dimt 25
X |we; (k) |2Qjs* (B) Qis (R) , (2.10a)
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Uoz/z stnmaanm-sa= ﬁz/z Zk(>kF) Zu'=b 2, 8

X |w2; (R) |2Q;s* (k) Qs () , (2.10b)
Usa/2 Snstins"ns?= /2 Secours Tim 2. 0 |
X |ws; (k) |2Qjs* (B) Qjs (k) , (2.10c)
and
Ui=TU: Deccrm lwin(B) 12, (i=1,2,3) (2.11)

where w;; are the i—j elements of the matrix W and U,=U., and
U.=Uy;=U,;. The symbol (k<kr) denotes taking the k-sum inside
‘(outside) the Fermi surface, kr being the Fermi momentum. We
assume that the E, band is half-filled at stoichiometry. Then,
for the in-plane isotropic case the summation Yi<zr, in Eq.
(2.11) must be performed within the range

|z + | By | <7/2, (2.12)

where the equality of the both sides gives the Fermi surface for
the half-filled E, band. The presence of the small in-plane
amsotropy leads to a slight modification of the Fermi surface.
Similar procedure is applicable to the V.-terms in Eq. (2.3), and
thus we obtain the following expression for the unoccupied
energy levels

E;(t)=E;())+4E., ;(®) , (i=1,2,3) (2.13)
with |
AEe, ;(B) =Ftm1, 2,0 Uslws; (B) |24, @19

the dots standing for the contribution from the V.-term. We
notice that the 4E.,; term gives rise to the so called the Hubbard
gap. From numerical evaluation, we have confirmed that 4FE.,,
becomes much larger than 4E.,. for a set of adequate parameter
values (Ueu~8eV, Uiz~3eV, V.~0.5eV). This result is easily
understood from the fact that the holes in the E, band are under
the influence of the strong Coulomb repulsions at Cu(2) sites.
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Thus the relation, E,(k) >E,(k), is satisfied in the wide range of
the first Brillouin zone, and then the E, band lies inside the
Hubbard gap, i.e. the gap between the occupied and unoccupied
levels of the E, band. In such a situation, the carriers of the
supercurrent are mainly in the E, band. The Cu(2) and O(3)
levels contribute to the DOS of the E; band as follows

Deuces, 2 (E) = X |wis (B) |12 (E—E, (B)) (2. 15a)
Docas, 2 (E) = | was (B) |26 (E— Ey (B)) (2. 15b)
Docsy, 2 (E) = | was (k) |26 (E— Ey (B)) (2. 15¢)

whicn are depicted in Fig. 1. In this figure, the solid and dashed
curves give Dy, 2+ Doy, and Ccu}z,, ., respectively, and the
curves (a) and (b) correspond to the in-plane isotropic and
anisotropic states. For the in-plane isotropic case, D), and
Dy», 2 give the square-root divergenee at the upper edge of the
E. band, while for the in-plane anisotrppic case another square-
root divergence appears near the upper edge, along with the
divergence at the band edge.®® On the contrary, D, takes
small values in the whole range of the E, band, suggesting the
small contribution of the Cu(2) holes to the supercurrent.

§3 1D charge fluctuations in the Cu(1)-0(1)-0(4) chains

In this section, we consider the single 2D Cu-O plane and its
neighboring layer composed of the 1D Cu-O chains. A hole
picture is employed, and holes on the 2D Cu(2)-0(2,3) plane and
on the 1D Cu(1)-O(1)-O(4) chains are called 2D and 1D holes,
réspectively.

The Coulomb interactions between the 2D and 1D holes can be
expressed as

Hint=211;2 58 Utjntaﬁja , : : 3.1

where n and #;s are the number operators of 2D and 1D holes,
respectively, with site and spin indices, 7,7 and s,s’, and the
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Fig. 1. DOSs defined by Egs. (2.15a, b). The solid and dashed
curves correspond to Doc;y,e+ Docsy,2 and Deucsy respectively.
Egu=0, fap=1 and fa=t»=1.5 in unit of eV, and Eym=
Ey5,=2, for (a) and Eyey=~FEyg,+0.1=2 for (b).
magnitudes of the Coulomb interactions, U;;. As seen in the
preceeding section, the dominant charge carriers are the holes in
the E, band mainly composed of the O(2,3) levels. This implies
the necessity of considering the Coulomb interactions of the
0(2,3) holes with the holes in the 1D Cu(1)-O(1)-O(4) chains.
In the following discussion, we consider the interactions only
with the neighboring Cu(l), O(1) and O(4) holes, although the
shielded Coulomb repulsions are still of long range nature. The
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of(3) Cu(2)
Fig. 2. 2D Cu(2)—0(2,3) and 1D Cu(1)—0(1). Cu(l) and Cu(2)
are bridged with O(4).

situation is illustrated in Fig. 2 where the Cu-O layers are
spanned by the x and y axes, with the Cu(1)-O(1)-O(4) chains
directed to the x axis. In an oversimplified treatment, the shielded
Coulomb interactions are estimated in terms of the factor,
e® exp (—ks7)7-%, the notations used being standard. In the frame-
work of the Thomas-Fermi approximation, the shielding parameter
ks is given by ks2=4(3/n)'/*n.'’3/a, with the concentration of the
charge carriers #. and the Bohr radius @, For the present
material, #.~5X10* cm~? and the Cu(2)-Cu(l) and Cu(2)-0(2,3)
distances are roughly 44 and 24, respectively. Thus, in a rough
estimate the magnitudes of the hole-hole repulsions are given
by U0(2)—0(4)=U0(8)—0(4)~0-4evy Usczy—cncy=Uocsry"eucty~0. 26V and
Ubczy-0cr~0. 25eV. Since the O(3)-O(1) distance is much longer
than the O(2)-O(1) distance, we neglect Uscsy—ocs>-

We are now in a position of introducing the explicit expressions
for the Coulomb interactions between the 2D and 1D holes. In
terms of the Cu(l), O(4) hole creation operators dys*, dps* and
bpet with 1D mometum p directed to the x-axis and spin s, Fourier-
transform of the Coulomb repulsions between the neighboring
0(2,3) and O(4) holes can be expressed as
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I'Iint, 1=2U0bc2y-0c0» ZR;::/ Eknkz Dlas’ cosq 5(kzz—k1z—¢1)
X exp[—1(kiy—Fkey) Riy] @r1s* @rzeCps* (Riy) Cp-gs (Riy)
+2Uscsr—004> LaRiy Dikeyrkig 2u8s'0 (Boz—R1z—a)
Xexp[— i(kly —kz'y) Rizj] bk19+bk235pa+ (Riy) Cp—gs (Riu) 3.2

with 2D momenta &,= (kis, k1) and ky= (k:s, k2y), and 1D mometa
p and q directed to the x axis. Here we have written pL; and ¢L.
simply as p and ¢, L, being the Cu(1)-O(l) distance. The
variable R;, specifies the positions of the 1D Cu-O chains, and
thus ¢ps. (Riy) creates a O(4) hole at the Ry~chain. Since in the
present model, the 1D charge fiuctuations can travel only along
the x direction, the y-component of the momentum of a 2D hole
is unchanged in the 1D charge fluctuation emission and absorp-
tion processes. Dirac’s delta function in (3.2) indicates momen-
tum conservation in the x direction, with ¢ representing the
momentum carried by the 1D charge fluctuations. Similarly, we
have the following Coulomb interactions,

tht, z=2Uo(2)-Guu) Z:Rm Zkl,kg Zes'COSQ 5(kzz—k1z—11)
X exp[—i(kiy—k2y) Riy] akls+ayza‘7p8+ (Riy) Jp—qs (Riy), (3.3)
H'tnt, =2 UB(s)—Ou(l)Z:Rw Zkl,kz Zss/ 5(kzz—k1:c—¢1)
X exp[—i(kiy—kay) Riy] bk18+bk28d—p3+ (Riy) gp-qs (Rey), 3B.4
Hﬁt, +=2Us2r-001» ZRW Ekl,kz Esa' a(kzz*kw—Q)
Xexp [_i(km—kzy) Ryl Aras™* Aaslpst (Riy) Gp—qs (Riy). (3.5)
The above Hamiltonians yield the various 1D charge fluctua-
tion emission and absorption processes of the holes in the E;
band. Each process is described by the relevant three point
vertices as depicted in Figs. 3 (a) and (b) where the solid and
wavy lines represent the propagators of the E, holes and the
1D charge fluctuations, respectively. In the lowest order, the
Coulomb repulsions (3.2-5) give rise to the vertices,

" Loy—cucty (k,k—q; q) =2Uo<2)-0u(1)gzz (k, k—q) cosq, (3.62a)
Iyos-0a (R B—q ;5 @) = Usczr—0c1yg22 (B, B—q) ’ (3.6b)
Loyocar (B, k—q 5 q) =2Uscar—0c0g22 (B, B—g) cosq, (3.6¢)
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2Dk-=q
1Dq

2Dk

(a) (b)
Fig. 3. Three point vertices for the 1D charge fluctuation emission
(a) and absorption (b) processes due to the E, holes.

and -
Looy-cucsy (ky k~q 5 q) =2Uscsr-cucrsgsa (B, k—3), (3.7a)
Tocsy-0c1y (B, k—q; q) =2Uusr-00y=0, (3.7b)
Iycsr-0ca (B k—q; q) =2Uo(3>—o(4)gaz (k,k—q) , (38.7¢c)

where g¢i;=ws;(k)ws;(k—q) with the i—j components w;; of the
matrix W defined by Eq. (2.9). As is easily understood from Egq.
(2.9), the factors ¢.; and g, in Eqs. (3.6) and (3.7) come from
taking the @. component of the original fermion operators a* and
b*. We neglect the Coulomb interactions of the Cu(2) holes with
the neighboring O(4), Cu(l) and O(1) holes, since the contribu-
tion of the Cu(2) levels to the E, band is extremely small as
illustrated in Fig. 1. Making use of (3-6) and (3.7), the effective
couplings of the E. holes with the Cu(l), O(1) and O(4) holes
can be described by the following three point vertices, respec-
tively,

7'1=F0(2)—Cuu)+ro<a)—0u(n (3.82)
7‘2=Fo(z)—o(1)+Fo(a)—u(n, (3.8b)
73=low-owr+owr-ocer. ‘ (3.8¢c)

To investigate the scattering processes of the 2D holes from
the 1D charge fluctuations, we need to clarify the properties of
the 1D charge fluctuations. For this purpose, we introduce the
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unperturbed Hamiltonian for a single 1D Cu(1)-O(1) —O(4) chain,

Hy,.,p=Ea Y, 1:81s*dis+Eocry X jsGjs*Gis+Eocsy 3, 1sC1s*Cis
+ X <tisetij(dis* +h.c) + 3 15t (dis*Cis+ hec.)
+ X st (@us*Crsthuc.). (3.9)

Here we have neglected the index R;, of the fermion operators.
Fourier-transforming the 1D Hamiltonian (3.9), we easily find
that the three eigenenergies E;, E, and E, (E,>E,>E;) of H,, 1p
satisfy

E—E;=[f*+ {gs* (Eocy— Ea) +2t—fkgk} (Eoas—Evwy) 1] (E—Eyy)
+ [+ {gx* (Eocir— Ea) + 28291} (Bocr—Eocry) =] (E—Eocw) ™, (3.10)

with fr=2¢cosk, and gy=2fcosk,. Here, E; and E, are the
energies for the bonding (B) and antibonding (AB) subbands and
E, is the energy for the oxygen-dominant (OD) subband. Then
we can easily prove that the DOS; for these subbands are given
by the following common expression (with different energy
ranges)

D(E)=z"{I(E) (1—I(E)}")2|F(E) |7 3E*—2(Ea+Eoar>
+Eovws) E+EsEois+EoayEocs+Eoy Ea—B—4 (8 +12) I(E) |
XO(I(E))6(1-1(E)), (3.11)

where

I(E) = {(E—Eq) (E—Ev)) (E—Eowy) —B(E—Eo))} {F(E)},
(3.12)

and
F(E)=4{t*(E—Eow,+*(E—Eq) + 2411}, (3.13)

with Heaviside’s unit step function §. Combination of Eqgs. (3.12)
and (3.13) allows us to state that each subband has the square-
root divergence at its lower and upper band edges. The DOS for
the 1D Cu-O chain is depicted in Fig. 4 where the solid-dot,
dashed and dotted curves represent the contribution from the
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Fig. 4. DOSs for the B, OD and AB bands specified by the energies
Ey, B, and E; (Egs. (3.11a, b, c)), respectively. The solid-
dot, dashed, and dotted curves represent the contributions
from the Cu(l), O(1), and O(4) states. Eq=0, Epyy=2,

Eyy=2.2, t=1.5, {=0.8 =0 in unit of eV. The small but
non-zero ¢ leads to the similar curves for the DOS.

Cu(l), O(1) and O(4) levels, respectively. This figure exhibits
that the B and AB bands are mainly composed of the Cu(l) and
O(1) levels, whereas the OD band is mainly due to the O(4) and
O(1) levels. Thus, the interband B—OB and OD—AB and intra-
band OD—OD transitions would partly accompany the O(l)
O(4) transitions. It is worth noting that in the absence of the
O(4) levels, the DOS is constructed only from the B and AB
bands; then the particle-hole excitations are realized only by the
B— AB trausitions.

To calculate the 1D charge fluctuations, we introduce the
following single particle Green functions,

Gy (E) =X nyo|dt expli(pRis—E)] < TAum (1) A () >,
(3.14)

75
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where m,n=1,2,3 and Au'=ds, Ais’=as; and Ayu*=Cw. Then
particle-hole excitations can be described by product of two Green
functions

x0™ (g, 40) X p8E Gpiqse™ (E+q0/2) Gp—q/s™ (E—q0/2), (3.15)

carrying momentum ¢ and energy ¢,. It is convenient for our
purpose to write G,™*(E) as

0(Er—E;(p))

with the Fermi energy Er. Z;™ irepresents the wavefunction
renormalization and be given by

[Zm(p)]-t= lim G,™(E)/(E—E;(p)). (3.17)
E—Ei(p)

Then substitution of Eq. (3.14) into Eq. (3.15) leads after a few
manipulations to the following expression for the real and
imaginary parts of x™"(g, ),

Relx™(q,a0)1=P T + 5;{dp Zm (p+0/2) Z™ (9—4/2)
0(Ei(p)—Ex) —0(Er—Ei(5))
G—Ei(0+a/2 +E;(p—0/2) 6.18
Iz (q,0)1=1 « 5 ,{dp Z™ (p+0/2) Z7™ (b+4/2)

XO(E:i(p) —Er)0(Er—Ei($))d(q0—Ei(p+4/2)
+E;(p—4/2)). (3.19)

The factor P in Eq. (3.18) denotes taking the principle value.

To proceed further analysis, we introduce the Hubbard type
interaction (within each 1D Cu-O chain) defined in such a way
that

H,=Uecu/2 Y, 1815 Ai-s*A1-s@io+Uoz/2 Y] jsljs*Gj-s*@js@js .
T|‘ Uoz/z Z isEu‘"Et—x"’Et—sEis. (3. 20)
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Here we neglect the repulsion between the neighbouring Cu(1)
and O(1) (or O(4)) hoies, because it is much smaller than the
on-site Coulomb repulsion U., and U,,. To write the formulation
in a compact form, we introduce the 3x 3 matrices,

x“ll ,Xolz xols Ucu 0 0
Yo=|2* 2 x®|, U=|0 Uy 0 |. (3.21)
Xosl Xosz xosa O O UOz

Then, the chain approximation yields the following expression
for the m—n component of the 1D chorge fluctution matrix x

xmnzxomn_l_z: i,on’m' UUXoj"'l"E t,j,k,zXomi Uijxoijklxoln
+..., (3.22)

where the dots stand for the higher order terms with respect to
the Coulomb repulsions. From Eq. (3.22) it follows that

1™ ={(1—=2U) 1o} mn, (3.23)

where (M):; denotes the (z,7)-component of the 3x3 matrix M.
The densities of states for the 1D charge fluctuations L™ are
given by

Fnn(q, o) =2Im[{(1—xU) 20} mn], (3.24)

where Im means taking the imaginary part. Fn, gives distribution
of the eigenenergies of the corresponding charge fluctuation. The
factor 2 in Eq. (3.24) comes from the summation over the spin
index. In Figs. 5(a) and (b), we present the particle-hole con-
tinum where Fi; is non-vanishing in the g—g, plane. We notice
that in the hole picture we are using, the Fermi energy Er is
considered to be inside the gap between the B and OD bands or
near the lower edge of the OD band. Figure 5(a) cerresponds to
the case of Er lying inside the gap between the B and OD bands,
and then the particle-hole excitations are realized only by the
interband B—OD and B—AB transitions. These excitations take
comparatively high frequencies, owing to the large energy gaps.
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Figs. 5. (a) and (b)
Particle-hole continuum. In the hatched region, the imagi-
nary part of the fluctuation is non-zero. Parameter values
are the same as those employed in Fig. 4. (a) Er lies
inside the gap of the B and OD bands. (b) Er lies inside
the OD band; Er=2.05¢V.
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On the other hand, for Er lying inside the OD band, the intraband
(OD—O0D) and interband (OD—AB) transitions take place, along.
with the B—»AB and B—OD transitions (Fig. 5(b)). Since the OD -
band is close to the. AB band, the particle-hole excitations due to
the OD—AB transitions take smaller energies or equivalently

Fi1
o4}
Fi1
04f 0.2}
0.2 6 .}
o1 2

(a)

Figs. 6. (a) and (b)
Energy ¢o dependence of the spectrum Fj;. Parameter
values are the same as those employed in Fig. 5. (a) Er
lies inside the gap of the B and OD bands. (b( Er lies
inside the OD band; Er=2.05eV. Uz=8eV and U;=3eV.
The curves C; and C; correspond to ¢=0.1 and 0.6, re-
spectively.
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lower frequencies than those due to the B—AB and B—OD
transitions. We depict the 1-1 component of Fy;, i.e. Fy; in Figs.
6(a) and (b) where Er lies inside the gap between the B and OD
bands for (a) and inside the OD and for (b). The sharp peaks
in the spectrum correspond the charge transfer excitonic reson-
ances. In Fig. 6(a) we find two sharp peaks corresponding to the
B—OD and B—AB transitions (in order of lower energy), while
in Fig. 6(b) there appear four peak corresponding to the OD—OD,
OD—AB, B—»AB, and B—AB transitions. The other components
of Fi; behave like F;, in the gross features.
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As for the attractive interaction due to scattering of electrons
from excitonic resonances, Allender, Bray and Bardeen® have
derived the approximate relation, Vi~ u/Fo,?, o2, where p is the
repulsion between electrons and F is the specrtum of the particle-
hloe excitations with w, and @, being the plasmon energy and
the energy gap. However this formula is not necessarily con-
venient for the present model, since in our discussion the various
interband and intraband transitions take place. Thus, instead of
the formula obtained by Allender et al, we make use of a slightly
different expression which is derived as follows.

In the phonon-mediated pairing mechanism, the attraction V
between charge carriers is proportional to the interaction of each
carrier with the polarizable medium, ¢. It is also proportional to
the inverse of a typical phonon energy F,», the inverse indicating
how easily the medium is polarizable. Thus we have V~g?/Eps.
Similar expression is valid for the attraction caused by exchange
of boson-like modes other than the lattice vibrations. In the
present case, the excitonic resonances have a continum of eigen-
energies, which is specified by the spectrum function (3.24).
Thus, it follows that

V=1 n,n[dEdk<7n(k, k=03 @) Fun(@, E)ra(—F, —k+4; ) > av/E,
(3.25)

where <...>4r means taking the average over 1D momentum gq,
and the three point vertices y defined by (3.6) and (3.7). In Eq.
(3.25), we have assumed the vanishing total momentum of a
Cooper pair. The calculated results are -illustrated in Fig .7,
representing the Er dependence of V. In this figure, the solid
and dashed curves correspond to the in-plane isotropic and in-
plane anisotropic cases. In this paper, we have introduced the
in-plane anisotropy only by the inequalities, ¢#?, anu E,, oe# Eo, »
(refer Eq. (2.2)), which affect on the value of ¢ appearing in
the vertices (3.6) and (3.7). In such a treatment, the in-plane
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anisotropy induces only a small modification of the result for
the isotropic case. When E, lies inside the gap between the B
and OD bands, the possible particle-hole excitations are due to
the B—»OD and B—AB transitions. Then we have V~0. 4-0.5¢eV,
as illustrated by the flat lines in Fig. 7. With increasing Er, V in-
creases rapidly toward its maximum and then decreases gradually.
When the small amount of holes occupy the OD band, there occur
the particle-hole excitations attributed to the intraband OD—QOD
and interband OD—AB transitions, in addition to the B—»OD and
B—AB transitions. Both the OD—OD and OD—AB transitions
take comparatively small energies, and they make a large con-
tribution to enhancing the value of V. Indeed, as is seen from
(3.25), the excitonic resonances with lower energies are more
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LOWER EDGE OF THE 0D BAND

04 1:6
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Fig. 7. Fermi energy-dependences of the effective attraction V
given by Eg. (3.25). The solid and dashed curves corre-
spond to the 2D in-plane isotropic and in-planeanisotropic
cases.
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favorable than those with higher energies in enhancing V. Thus,
the OD—OD and OD«AB transitions are the origin of the rapid
increase in the E» dependence of V. We notice that the maximum
of V is about 0.6~0.7eV. Although these values are smaller, for
example, than those obtained by Ruvalds'® using the 2D plasmon-
mediated pairing model (V~1-1.4ev), the calculated values still
suggests the significant role of the mechanism discussed above.

We notice that the presence of O(4) atoms plays a key role in
our discussion. As stated already, in the absence of O(4) the
DOS for each 1D Cu-O chain is composed of the bonding and
adtibonding bands without the narrow OD band. Then the charge
fuctuations stem only from the B—AB transitions, whose contribu-
tion toward the attraction is about a half of the values illustrated
in Fig. 7.

§4 Summary

In this paper, we have considered the effective attraction induced
by the charge fluctuations occurring in the 1D Cu-O chains. Our
main concern in this paper has been to discuss contribution of
the O(4) levels toward the attraction, and we have stressed the
role of the narrow oxygen-dominant band constructed mainly
from the coupling of the O(4) and O(1) levels. Freeman et al*®
have also suggested the significance of the O(4) levels coupled
to the 1D Cu(1)-O(1) chains, in the framework of the band
structural calculation.

In the superconducting phase, the Fermi energy Ey in the hole
picture lies i) around the lower edge of the OD band or ii) inside
the energy gap between the B and OD bands, and such particular
postions of Er make the charge fluctuations very sensitive to the
hole concentration in the Cu-O chains. - Our calculation indicates
that for both cases i) and ii), the OD band gives a large con-
tribution to enhancing the magnitude of the effective attiaction.
In particular, for the case i) the electronic transitions ‘OD—OD
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and OD—AB take place in the chains, along with those observed
for the case ii), and mixing of such transitions makes enhance-
ment of V more conspicuous than the case of i). Furthermore,
the O(2,3)-0(4) distance is much shorter than the O(2,3)-0(1))
(or Cu(l)) distance, and this leads to comparatively large Coulmb
interaction between the O(4) and O(2,3) holes, or equivalently,
large contribution of the O(4) levels to the three point vertices
defined by (3.6) and (3.7).

Use of Morel-Anderson formula!® leads to T.=<E;,> exp
[—(V—p)], where <E;,> is the averaged eigenenergy of the
charge fluctuations, and V(g) the magnitude of the attractive
(repulsive) interaction. This formula indicates that high-7,
superconductivity results from the large <Ej,>, i-e- high fre-
quencies of particle-hole resonances in addition to the enhanced
V. The interband transitions OD—AB and B—»AB play a signi-
ficant role in enhancing the frequencies of the resonances as well
as in enhancing V, while the intraband OD—OD and interband
B—OD transitions make a comparatively large contribution toward
the enhancement of V. Although the introduction of the O(4)
levels coupled to the 1D Cu-O chains tends to reduce <E;,>, the
presence of these levels makes the T.-value higher via the con-
spicuous increasing of the effectiue attraction. The detailed
discussion will be presented in a separate paper.!®
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