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Abstract 

 Electroencephalography (EEG) is a method for recording brain activity as 

electrophysiological indices, accurately reflecting the state of brain activity. 

Proper processing and analysis of EEG signals not only aid in the diagnosis of 

brain disorders such as coma, brain death, and epilepsy but also enable the 

control of external devices using EEG signals. EEG signals are very weak 

electrophysiological signals, susceptible to noise, making their collection and 

processing challenging. For physicians diagnosing patients' brain activity states 

using EEG signals, making rapid and accurate diagnoses from noise-

contaminated EEG signals is difficult. 

 In this study, we propose EEG signals de-noising and feature selection 

methods, considering the EEG signal collection environment and patient 

condition, based on the clinical interpretation standard. Initially, we conducted 

research on the diagnosis of coma/brain-death brain activity states. We applied 

our proposed method to coma/brain-death patient EEG signals and constructed 

a neural network model using deep learning methods. The results achieved a 

classification accuracy of 99.71% and an F1 score of 99.71%. Subsequently, we 

conducted research on the classification of epileptic focus and non-focus channel 

iEEG signals, building a neural network model using deep learning methods. The 

classification accuracy reached 85.14%. By combining our proposed method 

with deep learning techniques, we proved their effectiveness and reliability, 

offering valuable support for physicians' clinical diagnoses. In our research on 

constructing a Brain-Computer Interface (BCI) system, we developed a P300 

visual stimulator, leveraging the principle that subjects produce characteristic 

EEG signals in response to visual stimuli. We constructed a high-accuracy BCI 

system using an SVM classifier. This enabled real-time control of robot 

movement using EEG signals, accomplishing tasks such as wheelchair operation. 

We established a theoretical foundation for applying EEG signals in the field of 

welfare.  
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Abstract (和文) 

 脳電図(EEG)は、脳活動を電気生理学的指標として記録する手法であ

り、脳活動状態を正確に反映できる。EEG信号に適切な処理・分析を通

じて、昏睡、脳死、癲癇などの脳疾患の診断に役立つだけでなく、EEG

信号を用いて外部装置を制御することも可能である。EEG信号は非常に

微弱な電気生理学的信号であり、雑音に影響されやすく、その採集と処

理は難しい。医師が EEG信号を用いて患者の脳活動状態を診断する際、

雑音が混入された EEG 信号に対し、迅速かつ正確な診断を下すことは

難しい。 

 本研究では、臨床脳波検査基準に基づき、EEG 信号採集環境と患者

状態を考慮しながら、雑音除去法と脳波特徴選択法を提案する。まず、

昏睡/脳死脳活動状態の診断に関する研究を行った。昏睡/脳死患者 EEG

信号に提案手法を利用して、深層学習法を用いたニューラルネットワー

クモデルを構築した。その結果、分類精度は 99.71%、F1スコアは 99.71%

に達した。次に、癲癇焦点と非焦点チャンネル iEEG 信号分類に関する

研究を行い、深層学習法を用いたニューラルネットワークモデルを構築

した。その結果、分類精度は 85.14%に達した。提案手法と深層学習法を

組み合わせて使用し、その有効性と信頼性を証明し、医師の臨床診断に

有効な支援を提供できることが確認された。ブレーン・コンピューター・

インターフェース(BCI)システムの構築に関する研究において、被験者が

視覚刺激に反応して特徴的な EEG信号が生成される原理を活用し、P300

視覚刺激器を開発した。SVM 分類器を用いて高精度 BCI システムを構

築した。これにより、EEG信号を用いてリアルタイムでロボットの動き

を制御し、車椅子を操作するなどのタスクを実現した。EEG信号を福祉

分野へ応用するための理論基盤を構築した。 
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1. Introduction 

Brainwave, when not specifically specified, means a recording of the electrical 

signal activity of the brain captured by placing electrodes on the surface of the 

scalp, and is generally written as Electroencephalogram (EEG). Brainwaves 

recorded by placing intracranial electrodes on the surface of the cerebral cortex 

are known as intracranial waves, or Intracranial Electroencephalography (iEEG). 

For the use of electrophysiological signals from the brain for different purposes, 

the signals required are different.  

1.1. Brain Disorders 

EEG patterns, play a crucial role in the understanding and diagnosis of various 

brain disorders. These electrical signals, which represent the collective activity 

of neurons in the brain, offer a window into the functional state of the brain. In 

conditions such as diagnosis of coma/brain-death [4, 7, 12, 14, 16], epilepsy [11, 

17, 19], sleep disorder [8], Alzheimer's disease, and Parkinson's disease, 

characteristic alterations in EEG patterns are often observed. 

1.1.1. Coma/Brain-Death 

EEG signals are commonly used to diagnose the brain state of clinically 

coma/brain-death patients. The diagnosis of coma/brain-death usually requires a 

rigorous process to be followed. According to the world brain-death project [9], 

brain-death clinical examination should contain:  

(1) There is no evidence of arousal or awareness to maximal external stimulation, 

including noxious visual, auditory, and tactile stimulation.  
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(2) Pupils are fixed in a midsize or dilated position and are nonreactive to light; 

(3) Corneal, oculocephalic, and oculovestibular reflexes are absent.  

(4) There is no facial movement to noxious stimulation.  

(5) The gag reflex is absent to bilateral posterior pharyngeal stimulation.  

(6) The cough reflex is absent to deep tracheal suctioning.  

(7) There is no brain-mediated motor response to noxious stimulation of the 

limbs.  

(8) Spontaneous respirations are not observed when apnea test targets reach 

𝑝ℎ < 7.30 and 𝑃𝑎𝐶𝑂2 ≥ 60 mm Hg [9].  

In the previous study, the following coma/brain-death clinical diagnostic process 

was proposed. Figure 1 shows the proposed brain-death clinical examination 

flow [5]. 

 

Fig.  1. The brain-death clinical examination flow.  

Confounders such as the effects of certain medications, metabolic abnormalities, 

or cardiopulmonary instability may lead to misjudgment of the clinical 

examination for brain-death. Therefore, testing and evaluation of the absence of 

brain blood flow or electrical activity may be necessary at times. Furthermore, 

during the clinical examination, which includes apnea test, it is essential to assess 

the absence of brain blood flow or electrical activity in the brain before the apnea 

test as the apnea test may cause the irreparable loss of brain function or even 

direct lead to death. 

Compared to acquiring EEG signals from epileptic foci channels (such as the 

Bern-Barcelona EEG Database [3], Bonn EEG Time Series Database [2], and the 
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CHB-MIT Scalp EEG Database [15] etc.), the acquisition of coma/brain-death 

EEG signals is performed in a more demanding environment, generally in the 

Intensive Care Unit (ICU). The acquisition of coma/brain-death EEG signals 

involve personal privacy protection. Moreover, it is necessary to adjust the 

electrode position according to the patient's personal condition. 

The Brain-Death EEG Database we used in this study is carried out in a hospital 

in Shanghai and classified into a deep-coma group (39 patients) and a brain-death 

group (19 patients). All patients’ EEG signals acquisition and recording are with 

the permission of the patients’ families. An EEG-based preliminary examination 

system was developed during the standard clinical procedure. Figure 2 shows the 

layout of the electrodes. Several statistics-based signal processing tools have 

been developed for the signal detection or extraction, denoising and disease 

classification. A robust principal factor analysis (PFA) associated with 

independent component analysis (ICA) approach is developed to reduce the 

power of additive noise and separate the brain activities and interference sources 

based on the Brain-Death EEG Database [4, 5, 6]. Tensor Train Decomposition 

(TT) was applied to analyze coma/brain-death EEG signals. Reshape the EEG 

data from matrix to higher-order tensor to extract more valuable features, and the 

support vector machine (SVM) classifier is used to complete the classification 

task [7]. Method to discriminate discrete states of brain consciousness by 

examining nonlinear features in the EEG have been proposed. This approach 

uses convex combinations of adaptive filters to implement a collaborative 

adaptive filter architecture. Simulations based on different filter combinations 

show that this approach is suitable for discriminating coma and quasi-brain-death 

states of patients based on fundamental EEG signal features [12]. 
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Fig.  2. The electrode layout of the Brain-Death EEG signal recording. 

Multivariate Multiscale Entropy (MMSE) is used for brain consciousness 

analysis [1]. Compare with Multiscale Entropy (MSE) method, MMSE could 

conduct a comprehensive analysis of the complexity of the underlying signal 

generating system. For higher MMSE scales the coma patients showed higher 

complexity than the quasi-brain-death patients, which indicates a reduction in 

the intra-cortical information flow and lower neuronal process in the brain for 

the quasi-brain-death patients [1]. Empirical Mode Decomposition (EMD) 

technique is used to extract informative brain activity features of the real-world 

recorded clinical EEG data. In addition, the power spectrum technique was used 

to assess significant differences between the coma and quasi-brain-death patient 

groups. The power values indicated a high intensity of brain activity in the coma 

patient group, whereas these activities were absent in the quasi-brain-death 

patient group. Comparing the results with clinical diagnosis, the EMD method 

has shown its validity and reliability [14].  

The MMSE method can characterize the brain state of consciousness from multi-

channel EEG recordings, and the EMD method is applied randomly to the raw 

EEG signal from one channel. Both have provided a comprehensive analysis of 

EEG signals from suspected brain-death patients in terms of EEG signal 

complexity analysis and energy analysis and have yielded valid and reliable 
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results. However, both methods face the same problem of being limited by the 

size of the data set, and confirmation of method reliability requires additional 

data analysis. 

In this study, we pre-process the acquired raw EEG Database, train and test the 

neural network using the pre-processed coma/brain-death EEG signals and 

complete the task of pre-processed coma/brain-death EEG signals classification. 

The classification results are used to analyze the constructed neural network 

model and to verify the feasibility as well as the reliability of this dataset for the 

classification task in deep learning.  

During the coma/brain-death EEG signals acquisition, EEG signals are 

susceptible to various interferences. Electromagnetic environmental noise can 

erroneously suggest cerebral electrical activity. Sedation, hypothermia, toxic 

states, metabolic disorders also cause unexpected changes in the amplitude of 

EEG [9]. We attempt to filter out the external electromagnetic environmental 

noise from EEG signals by using a band-pass filter. For partial abnormal EEG 

signals with unexpected amplitude changes generated by sedation, metabolic 

disorders, etc. we set a threshold for the amplitude (n=75), and the signals with 

a maximum amplitude greater than this threshold are considered to contain 

information that may confound the diagnosis of the brain-death and are rejected. 

Finally, we rejected the data containing noise that could not be removed by the 

band-pass filter, and invalid data that were below the amplitude threshold but 

would clearly interfere with the dataset by visual inspection. Instead of the 

manual feature extraction method, a 49-layer end-to-end one-dimensional 

convolutional neural network (1D-CNN) model is used to complete the 

classification task of pre-processed coma/brain-death EEG signals. K-fold Cross 

Validation (K=5) is used to make the model output more reliable.  
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During the training phase of the model, the training accuracy reached 100%. In 

5-fold cross-validation, we get the mean test accuracy with 99.71%, recall score 

with 99.51%, F1-score with 99.71% and AUC with 99.89%, which means our 

model is well performed in the classification task of the coma/brain-death EEG 

signals. 

1.1.2. Epilepsy 

iEEG is often used by clinical experts to determine the location of the epileptic 

focal in the treatment of epilepsy. According to the World Health Organization, 

there are more than 50 million people with epilepsy in the world. Epilepsy has 

become one of the most common neurological diseases in the world. Epilepsy is 

a chronic disease of the brain, which is caused by abnormal discharge of some 

brain tissue. Up to 70% of epileptic patients can control seizures through the 

proper use of antiepileptic drugs. For patients with drug-resistant, surgical 

treatment may be useful [24]. 

The difficulty of surgical treatment of epilepsy lies in the accurate localization 

of epileptic foci before the operation. Clinical experts need to place multiple 

electrodes in the patient's scalp, record EEG for one week and visually detects 

the obtained EEG to speculate the location of abnormal discharge of brain tissue, 

and then perform resection surgery [31]. It is a heavy burden for clinicians, both 

time-consuming and strenuous. Hence, there is an urgent need for a technique 

which could automatically identify epileptic focal signals. 

In recent years, machine learning has been widely used in various fields, 

including biomedical field [30]. The application of various machine learning 

methods has greatly reduced the burden on clinical experts. In neuroscience, 

various machine learning methods are often used to process EEG signals to assist 
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clinicians in diagnosing patients. 

The most common sequential steps are pre-processing, feature extraction, 

training, and classification when developing an automated diagnostic system by 

using machine learning [29]. To standardize the input of the model in the 

subsequent step, the raw signals are always being normalized and transformed 

in the pre-processing stage. Entropy [18, 20, 23, 26, 27], Wavelet Transform [22], 

Fourier Transform, Empirical Mode Decomposition (EMD) [26, 20] and other 

methods are always used to extract the significant features from the signals in 

the feature extraction stage. In the training stage, K-Nearest Neighbor (KNN), 

Support Vector Machine (SVM) [23, 19], Recurrent Neural Network (RNN) [25] 

and the other neural network, are widely used for the classification of features 

obtained by handle-crafted feature extraction methods. 

Instead of the manual feature extraction method, a 21-layer end-to-end one-

dimensional convolutional neural network (1D-CNN) is used to the automated 

classification of focal and non-focal iEEG signals in this study. Focal iEEG 

signals could be classified automatically from the iEEG signal recordings. We 

use the Bern-Barcelona dataset to perform the classification process. Raw signals 

will be the input of the network, no pre-processing and no feature extraction so 

that the computational is reduced significantly. In 10-fold cross-validation, the 

average accuracy is about 85.14%. 
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1.2. Brain-Computer-Interface System 

EEG is also very widely used in the construction of Brain-Computer Interface 

(BCI) system. BCI as a frontier technology, have sparked wide-ranging interest 

in scientific research [32, 36, 46]. The crux of its novelty lies in allowing users 

to interact and control the external environment directly using brain signals [33, 

41], providing vast new horizons for the advancement of fields such as 

neuroscience, artificial intelligence, and biomedical engineering. Particularly in 

aiding disabled individuals to regain perceptual and behavioral abilities [34, 43], 

as well as applications in gaming [35] and virtual reality (VR), BCIs have shown 

limitless potential. P300, SSVEP, and MI represent the three most used 

neurophysiological signal types in BCI research, each carrying its unique 

advantages and challenges. 

1.2.1. Steady State Visual Evoked Potential (SSVEP) 

Steady-state visually evoked potentials (SSVEP) are oscillatory responses that 

can be elicited in the visual cortex by repetitive visual stimulation at a fixed 

frequency, typically ranging from 3.5 Hz to 75 Hz [47]. As a reliable and non-

invasive technique, SSVEPs have been extensively used in research and 

application of brain-computer interfaces due to their high signal-to-noise ratio, 

less subject training, and considerable information transfer rate [39, 48]. The 

optimal placement of electrodes for SSVEP recording is typically determined by 

the nature of the visual stimuli and the goals of the experiment. Most studies 

report the maximal SSVEP responses in the occipital region, specifically at Oz, 

O1, and O2 electrode locations, according to the international 10-20 EEG system. 

This is attributed to the anatomical proximity of these locations to the primary 
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visual cortex which is most directly activated by visual stimuli. 

1.2.2. Event-Related Potential Positive 300 (ERP P300) 

P300 belongs to a type of Event-Related Potential (ERP), which is an 

endogenous, specialized evoked potential related to cognitive function [45]. 

P300 is a positive wave that appears approximately 300 ms after the occurrence 

of an event (e.g., auditory, visual stimulus), and it is a fusion of a delta (0.5-4 Hz) 

rhyme brainwave as the main contributor and a theta (4-7.5 Hz) rhyme brainwave 

response. Its nomenclature indicates that it is a forward wave relative to the 

reference voltage P [38]. The time interval from the application of the stimulus 

to the peak of the wave is about 300 ms, but 300 only indicates a time interval, 

and in fact the latency is 250ms-800ms, so intervals greater than 300ms should 

be considered when sampling data from a time series. P300 can be evoked by 

visual, auditory, and somatosensory stimuli, and can be used to recognize neural 

activities related to cognitive processes in the human brain. Through the in-depth 

study of the neural mechanism of P300, researchers can help human beings to 

further explore neuroscience and form a more perfect theoretical guidance, 

which can develop its applications in medical diagnosis, engineering 

applications, neuroscience, and is also of great significance to further 

understanding of the human brain.  

1.2.3. Motor Imagery (MI) 

Motor Imagery (MI), when a person imagines his/her own limbs (or muscles) 

moving but there is no actual movement output, there will still be activation in 

specific brain regions of the person. By analyzing the EEG signals and detecting 

and identifying the activation effects of different brain regions to determine the 
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user's intention, direct communication and control between the human brain and 

external devices can be realized [37, 40, 42]. Currently, the common parts of 

motor imagery are left and right, right hand, feet, and tongue. 

During motor imagery, the cerebral cortex generates two kinds of rhythmic 

signals with obvious variations, namely, the μ-rhythm signal of 8-15 Hz and the 

β-rhythm of 18-24 Hz. During motor imagery, neuronal cells are activated, and 

metabolism is accelerated, and the EEG rhythmic energy in the contralateral 

motor sensory area of the cerebral cortex decreases significantly, while the EEG 

rhythmic energy in the ipsilateral motor sensory area increases, a phenomenon 

known as Event Related Desynchronization (ERD)/Event Related 

Synchronization (ERS). Based on this relationship, multiple control commands 

can be generated by actively controlling the amplitude of μ and β rhythms in the 

left and right brains. For different research and application scenarios and 

purposes, different neurophysiological signal types are used. 

 

In this study, we focus on developing a 3x3 grid pattern stimulator reliant on 

P300 visual stimuli. This stimulator elicits the user’s P300 responses by 

probabilistically flashing a white circular target stimulus. To verify the efficacy 

of our design, we initially conducted a series of offline experiments, acquiring 

subjects’ EEG data using the Muse EEG equipment. The results indicated that 

the Muse EEG equipment could effectively capture P300 EEG components. 

Subsequently, we extracted feature data from the experimental data collected 

from 3 subjects, which was then used to train a Support Vector Machine (SVM) 

classifier. The trained classifier achieved an accuracy rate of 84.1% in an offline 

environment. Upon successful completion of the offline experiments, we 

proceeded with real-time experiments. In the real-time experiments, we used by 
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the pre-trained SVM classifier to process in real time the EEG signals containing 

P300 components acquired from the Muse EEG equipment and successfully 

transformed the classification results into control commands for robots. The 

success rate of this process reached 81.2%, further affirming the reliability of our 

system in practical operational environments. 

1.3. Signal Processing 

EEG signals, as non-stationary signals, usually cannot be analyzed directly using 

traditional signal processing methods such as Fourier transform. In previous 

studies, signal processing methods such as Empirical Mode Decomposition 

(EMD), Turning Tangent Empirical Mode Decomposition (2T-EMD), and 

Multiple Empirical Mode Decomposition (M-EMD) analysis are usually used to 

decompose the EEG signals of non-stationary signals into a series of Intrinsic 

Mode Functions (IMF). The decomposed IMFs can be regarded as EEG signals 

containing concentrated frequency band information. At this point, by applying 

signal processing methods such as Fourier transform to the IMFs, the properties 

of the EEG signal can be analyzed and interpreted. 

1.4. Machine Learning 

Traditional machine learning methods are commonly used for the task of 

classifying EEG signals. Support Vector Machines (SVM) is a supervised 

learning algorithm that has been widely applied to various problems, particularly 

in classification issues within BCI systems. The main goal of SVM is to find an 

optimal hyperplane that maximizes the margin between different classes, thereby 

effectively partitioning the binary classification problem. In a typical 
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dataset(𝑥𝑖  𝑦𝑖) , 𝑥𝑖  denotes input features, and 𝑦𝑖  represents class labels. The 

primary task of SVM is to find a hyperplane that maximizes the distance from 

the hyperplane to the nearest points of the two classes. 

Linear Discriminant Analysis (LDA) is a classical linear learning method that 

can be used for both classification problems and supervised feature 

dimensionality reduction. The main goal of LDA is: given a training sample, try 

to project the sample features onto a vector, and hope that the projection points 

of similar samples are as close as possible, and the projection points of dissimilar 

samples are as far away as possible. When classifying a new sample, the features 

of the new sample are projected onto this vector as usual, and then the location 

of the projection point is used to determine the class of the new sample. LDA 

can be summarized as the projection with the minimum variance within a class 

and the maximum variance between classes. 

Canonical Correlation Analysis (CCA) is a statistical method that seeks to 

identify and measure the associations between two sets of variables [49]. This 

multivariate analysis technique extracts canonical variates linear combinations 

of the original variables from both variable sets that have maximal correlation 

with each other. As a result, CCA has been widely used in numerous fields, such 

as ecology, economics, psychology, and recently, it has gained considerable 

attention in signal processing and machine learning research [50]. 

In the construction of BCI system, CCA is utilized to maximize the correlation 

between the measured EEG signals and the reference signals, which are typically 

derived from the characteristics of the stimuli. In fact, CCA-based SSVEP 

detection has proven to be one of the most effective methods, achieving high 

accuracy and robustness even in noisy environments [51]. This method has 

demonstrated a high degree of effectiveness due to its capacity to simultaneously 
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consider multiple harmonics of the stimulus frequencies, increasing the 

distinguishability of the responses. 

 

EEG signals are very susceptible to noise. In the process of clinical interpretation, 

EEG signals containing a large amount of noise can cause significant problems 

for doctors' clinical diagnosis. When signal processing and machine learning 

methods are used to analyze and classify EEG signals containing noise, the noise 

can also lead to misinterpretation and even misclassification of the signals. 

Therefore, there is a need for a method that can minimize the interference of 

noise to assist in clinical diagnosis and the task of parsing and classifying EEG 

signals. Therefore, in this study, we propose an EEG signal pre-processing mode 

based on the clinical interpretation standard of EEG signals that considers the 

characteristics of the EEG signals, the state of the patient, and the state of the 

EEG device. The proposed EEG signal pre-processing mode shows in Fig. 3. 

 

Fig.  3 The proposed EEG signal pre-processing mode. 

When pre-processing EEG signals from coma/brain-death patients, the following 

points need to be noted. First, the EEG signal is acquired from the patient's scalp, 

and its effective frequency domain is 0.1-40 Hz, while the AC noise is generally 

50 Hz. For this part of electromagnetic noise, it can be removed by band-pass 
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filter and notch filter. Next, the filtered EEG signal, as the effect of 

electromagnetic noise has been reduced to do little, the cause of the EEG signal 

to produce high amplitude noise may be drug injection, metabolic disorders, poor 

electrode contact and so on. In contrast, the brain activity of coma/brain-death 

patients is very weak, and EEG signals above 75𝜇𝑉 do not occur in clinical 

interpretation standard. Therefore, signals with amplitudes above 75𝜇𝑉 can be 

removed by setting a threshold. Finally, due to the patient's muscle spasms and 

other reasons, low-amplitude, and low-frequency myoelectric usually appear in 

the EEG signal. For this part of the noise, it can be removed by visual inspection 

or algorithms, etc. The amplitude of the EEG signal usually does not reach more 

than 100𝜇𝑉. In the pre-processing of sleep EEG signals, based on the clinical 

interpretation standard of EEG signals, the EEG signals acquired in the posterior 

cephalic lobe of human beings in the short period of time before they enter sleep 

will contain α rhyme with an amplitude of more than 100𝜇𝑉 for a short period 

of time. At this point in the pre-processing of the sleep EEG signal, it is not 

possible to remove EEG signals that exceed 75𝜇𝑉 or more. 

In the following chapters, we will present studies related to classification of 

coma/brain-death EEG dataset in Chapter 2. Chapter 3 will present studies 

related to the automated localization of epileptic foci. Chapter 4 will present 

studies related to the construction of a high-precision BCI system and Chapter 5 

will summarize and present the future works.  
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2. Classification of Coma/Brain-Death EEG Dataset 

Comparing with the EEG signal acquisition for epilepsy, Alzheimer's disease, 

etc., coma/brain-death EEG signals acquisition and recording is generally 

performed in a more demanding environment. As a hospital ward for serious 

illnesses and injuries requiring highly intensive medical care, the ICU usually 

has strict time limits for non-physician personnel to avoid external man-made 

disturbances and bacterial infection. The ICU is equipped with many devices and 

instruments to always monitor the patient’s condition. However, electromagnetic 

environmental noise caused by the operation of many electronic devices may 

have a significant impact on EEG acquisition which makes the acquired EEG 

signals mixed with prolonged, high-amplitude electromagnetic environmental 

noise and therefore impact EEG reading and physician immediate diagnosis. 

Moreover, for the specificity of the patient's condition and the timely 

management of emergencies, the acquisition of coma/brain-death EEG signals is 

much more difficult on the condition of without disturbing the physician's 

emergency treatment.  

Therefore, we propose a band-pass filter and threshold rejection-based EEG 

signal pre-processing method to enable physicians to obtain real-time, relatively 

low-noise or even noise-free EEG signals from patients quickly and accurately 

in a short period of time. Moreover, to assist physicians accurately and efficiently 

in making correct judgments, we propose a one-dimensional convolutional 

neural network (1D-CNN) model to classify the pre-processed EEG signals to 

coma EEG signal or brain-death EEG signal. Fig. 4. shows the pre-process of the 

coma/brain-death EEG signals and the training-test process of the proposed 1D-

CNN model. 
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Fig.  4. The structure of the proposed 1D-CNN model associated with EEG signals pre-processing. 

2.1. Coma/Brain-Death dataset 

The coma/brain-death EEG signals carried out in a hospital in Shanghai. A 

portable EEG system (NEUROSCAN ESI) connected to a patient to seek brain 

activity. The EEG signals were directly recorded at the bedside of the patients in 

the intensive care units. Only nine electrodes were chosen to apply to patients. 

Among these electrodes, six exploring electrodes (Fp1, Fp2, F3, F4, F7, F8) as 

well as ground (GND) electrode were placed on the forehead, and two electrodes 

(A1, A2) as the reference were placed on the earlobes based on the standardized 

10-20 system. The sampling rate of EEG was 1000 Hz, and the resistances of the 

electrodes were set to less than 8𝑘Ω. The layout of the electrodes can be seen in 

Figure 2. The EEG recordings were supervised by one physician (neurologist) 

and operated by a medical staff [16].  
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With the permission of the patients’ families, a total of 58 patients has been 

examined by using EEG. All patients were examined by the coma test, pupils 

test, and brainstem reflex test by two physicians. The patients were classified 

into a deep-coma group and a brain-death group before the EEG recording (two 

patients belong to both coma and brain-death cases depending on the specific 

recording date). The examinations and diagnoses from two expert physicians are 

independent. Because the health conditions of patients varied, each patient might 

have a different number of recorded data sessions at the same or different day. 

Finally, a total of 122 sessions’ recordings from 58 patients were stored in the 

computer. 

2.2. Data pre-processing method 

Intensive care units generally exist a lot of electromagnetic environmental noise 

due to the operation of electronic devices. We can usually remove this part of the 

noise by filters. Due to the weak activity of physiological brain electrical signals 

in coma/brain-death patients, the frequency band of EEG is generally in the delta, 

theta rhythms, and a small number of patients will have EEG components in the 

alpha rhythms, and a very few will have components in the beta rhythms caused 

by prescribed sedative. Based on the frequency domain characteristics of EEG 

in coma/brain-death patients, we chose to filter out signals above 40 Hz. In this 

way we can filter out the electromagnetic environmental noise above 40 Hz, as 

well as some of the EEG signals that may be present but do not have a great 

impact on the EEG signal classification. All EEG signals were digitally band-

pass filtered between 0.1 and 40 Hz using a fourth-order Butterworth filter. 

Forward and backward filtering was used to minimize phase distortions. Figure 

5 shows an example of the coma EEG signal mixed with electromagnetic 



 27 

environmental noise, and Figure 6 shows the EEG signals filtered by the band-

pass filter.  

Generally, EEG signal with high sampling frequency is down-sampled in the pre-

processing stage to minimize the computation cost. In order not to reduce the 

variations or missing EEG features that may be caused by down-sampling, we 

try to train the neural network with the original sampling frequency EEG signals. 

In the subsequent convolution and feature extraction stages of the neural network, 

the structure called Pooling Layer in the network will down-sample the 

convolutional processed data.  

 

Fig.  5. An example of the coma EEG signal mixed with electromagnetic environmental noise. 

 

Fig.  6. The EEG signals filtered by the band-pass filter. 

Sedation, hypothermia, toxic states, metabolic disorders, etc., may confound the 

test result of electrophysiological function. Some patients are prescribed sedative 
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at some point in the EEG acquisition process, which makes the acquired EEG 

signals show distinctive features (generally continuous high amplitude signals). 

Some other patients may have metabolic disorders because of the brain disease, 

thus affected the amplitude of the EEG signals. This part of EEG signals is 

characterized by high amplitude noise lasting 20-30 seconds (most of the signals 

exceed 100𝜇𝑉). For this part of EEG signal containing noise with obvious high 

amplitude characteristics, we set a threshold for the amplitude(n = 75) , and 

signals with a maximum amplitude greater than this threshold are considered to 

contain information that may confound the diagnosis of the brain-death and are 

rejected. Fig. 7. provides an example of the coma EEG signals with high 

amplitude noise.  

 

Fig.  7. An example of the coma EEG signals with high amplitude noise. 

 

Some signals containing noise that could not be removed by the band-pass filter. 

Some others containing artifacts’ amplitude (such as sedation etc.) that were 

below the threshold but would clearly interfere with the data. The low-frequency 

and low-amplitude noise always arise from some part of one or two patients' 

EEG recording. It is a short duration of time but recurrent. This kind of noise has 

a unique feature that the single low-frequency composition appeared repeatedly 
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in a short time. In this study, we reject this part of noise by visual inspection, and 

in the future, we could reject it automatically by the comparison of the absolute 

sum in different time window or the other methods.  The red frame in the Fig. 

8. shows the low-frequency and low-amplitude noise components that remain 

after the filter and threshold rejection. Some examples of the pre-processed coma 

EEG signals and brain-death EEG signals are shown in Figs. 9 and 10. 

 

Fig.  8. An example of the coma EEG signals with low-frequency, low-amplitude noise components. 

 

Fig.  9. An example of the pre- processed coma EEG signals. 
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Fig.  10. An example of the pre- processed brain-death EEG signals. 

2.3. The Proposed One-dimensional Convolutional Neural 

Networks (1D-CNN) 

Convolutional Neural Network (CNN) as a class of Feedforward Neural 

Networks that include convolutional computation and deep structure, has 

artificial neurons which could respond to surrounding units within a portion of 

their coverage and perform well for large image processing. A CNN model 

consists of one or more convolutional layer and a top fully connected layer, and 

includes associative weights and pooling layers. This structure allows the CNN 

model to exploit the two-dimensional structure of the input data. Compared to 

other deep learning structures, the CNN model could provide better results in 
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image and speech recognition task. This model can also be trained by using back 

propagation algorithm. Compared to other deep, feed-forward neural networks, 

the CNN model requires less parameters to be considered. For one-dimensional 

data, such as single-channel EEG signals, one-dimensional convolutional neural 

networks (1D-CNN) also have a great advantage. Since the original one-

dimensional EEG data does not have two-dimensional features in the structure, 

using 1D-CNN can directly extract the temporal feature information of one-

dimensional data, which can greatly reduce the time consumed by the data in 

feature extraction, minimize the computational effort, and improve the 

computational efficiency. Fig. 11. shows the block representation of the proposed 

1D-CNN model. 

 

Fig.  11. Block representation of the proposed 1D-CNN model. 
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Each convolution filter of the convolution layer acts on the whole input signal 

and convolves the input signal. The result of convolution constitutes the feature 

map of the input signal, so that the local features of the signal are extracted after 

the convolution layer. We use convolutional kernels with a size of 3$\times$1 in 

each layer to make the feature extraction stage will not have too much 

computation. In order not to miss any features, we set the stride of the 

convolutional kernel to 1. The number of filters is set to the N power of  2(5 ≤

N ≤ 9). 

The max pooling layer greatly reduces the neural network model's parameter 

amount and minimizes the computational effort and reduces the risk of 

overfitting the network to some extent. To avoid the loss of features in the signal, 

we do not down-sample the signal in the pre-processing stage. In the neural 

network model, we add a maximum pooling layer after every two convolutional 

layer processing to reduce the number of parameters of the network model, thus 

reducing the computational cost. We set the max-pooling layers which pool size 

as 4 × 1 and stride as 4 after every 2 convolutional layers.  

Batch normalization layer [21] could accelerate the convergence rate of the 

neural network, effectively avoid vanishing gradient problem and improve the 

model generalization capability. We set the batch normalization layer after every 

convolutional layer and fully connected layer.  

Relu activation function can make the training speed of neural network faster 

than sigmoid, tanh and other activation functions. Since it is a nonlinear function 

itself, adding it to the neural network can make the model fit the nonlinear 

mapping. We set the Relu activation function after every batch normalization 

layer. 

Dropout layer [28] is used as a regularization method to prevent overfitting of 
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neural networks, which is of great help to the generalization capability of neural 

networks [10]. We set one dropout layer (Rate=0.5) before the first fully connect 

layer. 

The fully connected layer acts as a classifier in the entire convolutional neural 

network. All the feature maps obtained from the dropout layer are flattened into 

a one-dimensional feature vector as the input of the first fully connected layer. 

To perform the classification process, we set the softmax layer as the last layer 

of the proposed 1D-CNN model. In this layer, input EEG signals are classified 

as coma signal or brain-death signal. 

2.4. Experiment and Result 

Fig. 12. shows the mean accuracy of train set and test set with 5-fold cross-

validation. Fig. 13. shows the ROC (Receiver Operating Characteristic) curve of 

the test set. The summation of the confusion matrix obtained for the test data 

from this model in 5-fold cross-validation is shown in Tabel.1. With a 5-fold 

cross-validation, we obtained a mean accuracy of 100% of the training set and 

99.71% of the test set. By calculating the AUC (Area Under the Curve) of the 

ROC, the value of the mean AUC of the model was obtained as 99.81%. In 

addition, we also obtained the recall score of 99.5% and the F1-score of 99.71% 

for the test set. The number of the total parameters in this model is 12,231,458, 

and the estimate total parameter size is 105.97MB. The time required for a 5-

fold cross validation is about 3 hours. The model reached convergence at about 

the 125th epoch. We tried to use the raw coma/brain-death EEG signals directly 

to training and test the proposed 1D-CNN model with the same structure without 

the pre-processing mentioned previously. The results of the test are shown in the 

Table. 2. as a comparison.  
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Fig.  12. The mean accuracy of the train set and the test set with 5-fold cross-validation. 

 

Fig.  13. The ROC curve of the test set with 5-flod cross-validation. 

Table. 1. The summation of the confusion matrix obtained from this 1D-CNN model 

Class Pred Positive Pred Negative 

True Positive TP = 4,346 FP = 4 

True Negative FN = 21 TN = 4,329 

 

Table. 2. The performance measures of this 1D-CNN model 

Preprocess Classifier Accuracy TNR Recall Precision F1-Score 

No 1D-CNN 96.43 97.73 95.19 97.61 96.38 

Yes 1D-CNN 99.71 99.91 99.51 99.52 99.71 
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3. The Automated Localization of Epileptic Foci 

3.1. The Bern-Barcelona iEEG Database 

The iEEG signals from the Bern-Barcelona database provided by Andrzejak et 

al. at the Department of Neurology of the University of Bern, were obtained from 

the recordings of five epilepsy patients with focal epilepsy [3]. All patients 

suffered from long-standing pharmacoresistant temporal lobe epilepsy and were 

candidates for epilepsy surgery patients. According to whether the signals were 

obtained from the focal channels, the dataset is divided into two categories. Each 

category contains 3,750 pairs sample with a duration of the 20 s sampled at a 

frequency of 512 Hz rendering 10,240 data points per sample. The dataset was 

processed by digitally band-pass filtered between 0.5 and 150 Hz by using a 

fourth-order Butterworth filter. All of the signals were labeled as focal signals or 

non-focal signals by clinical experts. The iEEG signals that during seizure 

activity and three hours after the last seizure were excluded. 

An example of focal and non-focal iEEG signals is shown in Fig. 14, respectively. 

The various attributes of the Bern-Barcelona dataset are provided in Tabel. 3. 
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Fig.  14. An example of focal and non-focal epileptic iEEG signals. 

Table. 3. Various attributes of the Bern-Barcelona dataset 

No. Attributes Values 

1 Dataset shape 15,000*10,240 

2 The number of focal signals 3750*2 

3 The number of non-focal signals 3750*2 

4 Sampling time 20 s 

5 Sampling frequency 512 Hz 

6 Frequency band 0.5-150 Hz 

3.2. The Proposed One-dimensional Convolutional Neural 

Networks (1D-CNN) 

Developed one-dimensional convolutional neural network (1D-CNN) model 

was used for the classification of focal and non-focal iEEG signals in this study. 

This model allows the raw iEEG signals to be entirely classified directly without 

any feature extraction stage. 

Five different types of layers are used in the developed 1D-CNN model: 

convolutional layer, pooling layer, fully connected layer, dropout layer, and batch 

normalization layer. Fig. 15. shows the details and output shape of every layer of 

the developed 1D-CNN model. 
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Fig.  15. Block representation of the developed 1D-CNN model. 

We use convolutional kernels with a size of 3 × 1 in each layer to make the 

feature extraction stage will not have too much computation. In order not to miss 

any features, we set the stride of the convolutional kernel to 1. Relu activation 

function is used in all the convolutional layers. The number of filters is set to the 

N power of 2 (𝑁 ≤ 6). We set the max-pooling layers which pool size as 2 × 1 

and stride as 2 after every convolutional layer so that we could reduce the 

computation of the whole model and won’t miss the pivotal features. All the 
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feature maps obtained from layer 16 are flattened into a one-dimensional feature 

vector as the input of layer 17. The output obtained from the first fully connected 

layer will be nonlinear by using Relu activation function and dropout with a rate 

of 0.5 and then as the input of layer 20. To perform the classification process, we 

set the softmax layer as the last layer of the developed 1D-CNN model. In this 

layer, input iEEG signals are classified as focal and non-focal.  

One of the biggest challenges in this developed model is overfitting. We added 

the dropout layer [28] and Batch Normalization layer [21] in various positions 

to reduce the effect of overfitting. Batch Normalization layer in layer 4 

performed the normalization for the output obtained from the upper max-pooling 

layer in this study.  

3.3. Experiment and Result 

The Bern-Barcelona iEEG dataset used in the study was recorded by Andrzejak 

et al. We split the iEEG database into three parts: train set (80%), validate set 

(10%) and test set (10%). The training dataset and the validation data were used 

during the learning stage, and test data was used during the testing stage. Thus, 

12,000 out of a total of 15,000 samples were used for training, 1,500 were used 

for the validation, and the remaining 1,500 were used for the test. We used 10-

fold cross-validation to ensure the results more dependable. A detailed 

illustration of the data sets used for this study is shown in Fig. 16.  
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Fig.  16. The illustration of the data set used to develop this model. 

A batch's size of 128 with a size of 10,240 are randomly fed into the network in 

each epoch of training. The performance graphs of the 1D-CNN model during 

the training and the validation are shown in Fig. 17.  

 

Fig.  17. Performance graphs of the model during the training and the validation. 

It can be seen from the performance graphs that, there still has overfitting 

problem in the model although we've already used dropout layer and batch 
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normalization layer. We speculate that the representation of the Bern-Barcelona 

dataset on one-dimensional convolutional is not obvious. During the training 

phase of the model, the training accuracy is about 99%, and the validation 

accuracy is about 85%. In 10-fold cross-validation, the average validation 

accuracy is about 85.14%.  

Some of the published works are recorded in Table.4. Although the developed 

model could not yield a great classification performance, it still managed to 

obtain 85.14% accuracy without any pre-processing before the training stage in 

this model. Compared with the other feature extraction methods such as entropy, 

DWT and EMD, the 1D-CNN model has further advantages. It is less 

computational, and extraction of one-dimensional subsequences from the signal 

with reduced the number of features. 

Table. 4. Performance comparison of the developed model with other works on the same dataset 

Authors Feature Extraction Classifier Accuracy (%) 

Sharma et al. DWT, entropy LS-SVM 84 

Sharma et al.  EMD, entropy LS-SVM 87 

Chen et al. DWT SVM 83.07 

Das et al. EMD-DWT, entropy KNN 89.4 

Itakura BEMD, entropy SVM 86.89 

Bhattacharyya TQWT, entropy LS-SVM 84.67 

This model  1D-CNN 85.14 

 

Various evaluation criteria have been selected for the test data. The summation 

of the confusion matrix obtained for the test data from this model in 10-fold 

cross-validation is shown in Tabel. 5. and the performance measures of this 1D-

CNN model are shown in Tabel. 6. From the confusion matrix table, we could 
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know that the developed 1D-CNN model classified the test iEEG signals with a 

sensitivity (TPR) ratio of 88.76% and specificity (TNR) ratio of 81.68%.  

Table. 5. The confusion matrix obtained from this 1D-CNN model. 

Class Focal Non-focal 

Focal TP = 6,259 FP = 1,404 

Non-focal FN = 825 TN = 6,512 

 

Table. 6. The performance measures of this 1D-CNN model. 

Class TPR TNR FPR FNR Precision F1-Score 

Ratio (%) 88.76 81.68 18.32 11.24 82.26 85.39 

 

The Receiver Operating Characteristic Curve (ROC Curve) and the Area Under 

the Curve (AUC) of this 1D-CNN model is shown in Fig. 18. The value of the 

AUC has reached 92.17%, which means the developed model could make a great 

classification of the test data. 

 

Fig.  18. The Receiver Operating Characteristic Curve of this 1D-CNN model. 
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4. Construct of High-Precision BCI System 

4.1. P300 Visual Stimulator  

The primary focus within our designed BCI system lies in the design and 

realization of the P300 visual stimulator [44, 45]. Various forms of P300 

stimulators exist, encompassing visual, auditory, and tactile stimulators [13]. 

Due to their intuitive and easy-to-manipulate nature, visual stimulators have 

found widespread application in practice [14]. In this study, we developed a P300 

visual stimulator based on a 3x3 grid pattern. 

Unlike the traditional row-column P300 visual stimulator, our 3x3 grid pattern 

stimulator utilizes nine graphical units, each bearing a white circular image 

serving as the stimulus signal. For five control commands, the white circular 

image appears and disappears in five units in one epoch. Any instance of the 

white circular image appearing in a specific unit, in contrast to the image in other 

units at other time points, is considered a rare stimulus. The interval between two 

successive stimuli can be freely set, generally required to be at least 400ms but 

adjustable according to the individual differences of subjects. The graphical 

interface of the P300 visual stimulator we designed is shown in Fig. 19.  

 

Fig.  19. The graphical interface of the P300 visual stimulator. 
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The P300 visual stimulator we designed sends EEG data through the Lab 

Streaming Layer (LSL) encompassing three columns. The first column is time 

stamps in units of 1/256 seconds, the second column represents the stimulus 

labels corresponding to the time stamps, and the third column indicates the 

moment at which the subject presses the space bar when their chosen stimulus 

signal appears, defaulting to 0 if no key is pressed. By default, our P300 visual 

stimulator sends data once per second, with data shape as (3, 256). This setting 

ensures the provision of stimulus signals to the subject in a steady and continuous 

manner within the unit time. The sending frequency of this stimulator can be 

flexibly adjusted to suit different experimental needs and the reaction speeds of 

subjects. This structured data design facilitates subsequent data processing and 

analysis, aiding in the precise capture and understanding of subjects’ responses 

to various stimulus signals. An advantage of our designed stimulator is the 

capability of customizing the flashing frequency of the stimuli according to the 

needs of the subjects. More importantly, while ensuring the effective stimulation, 

subjects are less likely to feel fatigued, significantly enhancing the user 

experience in the experiment. 

4.2. Support Vector Machine 

In our constructed P300-based robot movement control BCI system, we initially 

verified the effective capture of P300 signals using EEG signals collected with 

the Muse EEG equipment headset in offline experiments. Subsequently, we 

employed SVM as the classifier to train and test our obtained EEG dataset. The 

experimental results showed that the trained SVM classifier exhibited good 

performance in real-time testing during online experiments. These experimental 

results provided empirical support for the superiority of SVM in BCI research 
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and application and offered useful references for further development and 

optimization of supervised learning algorithms in BCI systems.  

4.3. P300-based Brain-Computer Interface System 

In this study, we developed a P300-based BCI system for real-time robot control. 

The core parts of this system include a self-designed 3x3 grid pattern visual 

stimulator, a Muse EEG equipment, a Nao robot as the controlled object, and an 

offline trained SVM classifier. 

Our visual stimulator was developed using the Pygame package in the Python 

programming language, adopting a 3x3 layout design and independently 

adjustable stimulus flashing frequency to meet different experimental needs. To 

synchronize event markers and timestamps, we adopted the LSL protocol. This 

protocol not only recorded labels and timestamps of the stimulator but also 

precisely captured the time points of the subject’s pressing keys, and these data 

were transmitted in real-time to the signal processing script. The Nao robot we 

used in the experiment, developed by Aldebaran Robotics in France, is an 

autonomous walking, highly interactive robot capable of facial and object 

recognition. It is widely used in education, research, and medical rehabilitation 

fields. In our experiment, the Nao robot performed corresponding movements 

upon receiving control commands corresponding to positional information.  

The Muse EEG equipment we selected, with a sampling frequency of 256Hz, 

served as the EEG signal acquisition device, transmitting real-time collected 

EEG signals to the signal processing script via Bluetooth wireless. In the signal 

processing part, we synchronized the timestamps when subjects pressed keys 

with corresponding labels through the LSL protocol. When the number of key 

presses reached a predetermined threshold, the script automatically extracted all 
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1-second-long EEG signals corresponding to the timestamps, followed by 

filtering and arithmetic mean operations. Subsequently, we used by the pre-

trained SVM classifier to classify the pre-processed signals, differentiating them 

into 0 (no P300 component) and 1 (P300 component present). When the 

classification result was 1, the script located on the flashing label of the 

stimulator signal corresponding to the subject’s keypress event, determined the 

position of the target signal, and then translated this positional information into 

a control command for the Nao robot. Fig. 20. shows the block diagram of the 

designed P300-Based BCI system.  

 

Fig.  20. The block diagram of the designed P300-Based BCI system. 

4.4. Experiment and Result 

In P300-Based BCI systems, there are generally some basic assumptions and 

constraints. Firstly, the subject is required to maintain sustained concentration, 

as the generation of P300 signals necessitates that the subjects remain attentively 

focused on visual stimuli [7]. If the subject becomes distracted or fatigued, the 

resulting P300 may be diminished, thereby affecting the performance of the 

system. Secondly, the variety of P300 signals presents a challenge. The 

amplitude and latency of P300 signals may vary among individuals, and even 

within the same individual at different times. This variability may impact the 

training and performance of the classifier [15]. Finally, the acquisition of training 
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data is important. Due to the high variability of P300, the classifier may require 

a large amount of training data to achieve optimal performance [15]. 

In consideration of these assumptions and constraints, we took a series of 

measures to optimize our experimental design. During the experiments, we asked 

the subjects to rest after a certain number of trials to ensure that they maintain 

sufficient attention throughout the experiment. To ensure the consistency of the 

experimental environment, we chose to conduct the experiment in a relatively 

dark, noise-free environment. We also asked the subjects to clean the electrodes 

of the Muse EEG equipment and the area of skin in contact with the electrodes 

using alcohol wipes before each experiment to minimize noise and interference.  

Our experimental design is mainly divided into offline and online stages. In the 

offline stage, our primary task is to verify whether the Muse EEG equipment can 

effectively collect EEG signals containing P300 components. We had the 

subjects focus on target stimuli on the visual stimulator, then carried out pre-

processing and feature extraction, and trained the SVM classifier, performing 

parameter selection and optimization at this stage. The results of the offline stage 

provide an important premise and the basis for the subsequent online stage. Once 

in the online stage, we utilized the SVM classifier trained in the offline stage to 

classify the real-time EEG signals acquired from the Muse EEG equipment. In 

this stage, we simulated actual application scenarios, requiring the subjects to 

generate EEG signals containing P300 components by focusing on the target 

stimuli on the visual stimulator, then implemented real-time control of the Nao 

robot based on the output of the classifier. The results of the online stage directly 

demonstrate the system's performance in practical applications. Fig. 21. shows 

the flow chart of the experiment. 
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Fig.  21. The flow chart of the offline and online experiment. 

4.4.1. Offline Stage  

Step 1 The subjects cleaned their foreheads, the edge part of their ears, and the 

electrodes of the Muse EEG equipment using alcohol wipes. The subjects 

then wore the Muse EEG equipment, and the current EEG readings from the 

electrodes were confirmed through an oscilloscope program to ensure that 

the collected EEGs contained minimal or no noise components. 

Step 2 The stimulator was run, and the space key was randomly pressed to test 

whether the stimulator could receive real-time hit times. 

Step 3 The EEG recording code was executed. Taking a recording duration of 

60s as an example, after running the EEG recording code, the subject 

immediately looked at the stimulator. The flashing interval of the stimulator 

was set to 400ms, and the duration of the stimulus block was 100ms. After 

selecting a specific stimulus unit, the subject pressed the space key each time 

the stimulus appeared and was asked to count, acquiring EEGs containing 

P300 components. After the EEG recording time was reached, the recording 

was completed. 

Step 4 Step 3 was run to collect n pieces EEG signals of length 256. 

Step 5 The EEG signal processing code was executed. The collected EEGs were 

averaged out using the arithmetic mean by using the TP9 and TP10 channel 
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EEG data, converted to one-dimensional data. The resulting data was passed 

through a 0.5-35Hz band-pass filter and reshaped into n sets of data of length 

256. Data with a maximum amplitude exceeding 80 were removed, resulting 

in m sets of data.  

Step 6 The obtained m sets of EEG signals containing P300 components were 

averaged out using the arithmetic mean. Fig. 22. shows the P300 component 

of the EEG signals after using the arithmetic mean.  

Step 7 The m sets of data were randomly shuffled and averaged in sets of 4, 

resulting in k sets of EEG data containing P300 components. 

Step 8 Steps 2-4 were run, g sets of EEG data of length 256 were randomly 

collected, the subject did not look at the stimulator, and pressed the space 

key randomly, obtaining EEGs without P300 components. Step 5 was run to 

obtain h sets of arithmetic mean EEG data without P300 components. 

The obtained k sets of averaged EEG data with P300 components and h sets of 

averaged EEG data without P300 components were combined and randomly 

shuffled, and the shuffled data was split into an 80:20 ratio. 80% was used as 

training data input into the SVM, yielding the SVM classifier. 20% was used as 

test data to test the accuracy of the obtained SVM classifier. When the classifier's 

accuracy reached above 75%, the obtained SVM classifier was used in the online 

experiment for real-time classification of EEG signals.  

 

Fig.  22. The P300 component of the EEG signals after using the arithmetic mean. 
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4.4.2. Offline Stage Results 

In the offline stage of the P300-based robot control BCI system experiment, we 

validated the conclusion that the Muse EEG equipment can capture P300 

components in the subject's EEGs. We collected 2173 pieces of EEG signals, 

each of length 256, containing P300 components from 3 subjects. After filtering 

and reject high-amplitude noise, the data were randomly shuffled, and 1600 

pieces of signals were selected. The data were then subjected to arithmetic mean 

every 4 signals, converting them into a single one-dimensional data sequence of 

length 256, yielding a total of 400 pieces of signals. Non-target signals were 

processed in the same way, producing 400 pieces of non-target signals. Both 

categories of data were merged and shuffled, with 80% selected for training the 

SVM classifier, and the remaining 20% used as a test set to assess the 

performance of the SVM classifier. The test set consisted of 160 signals, of which 

133 were successfully classified, resulting in a classifier accuracy rate of 84.1%. 

As shown in Figure 6, after 1600 pieces of target EEG signals and 1600 pieces 

of non-target EEG signals averaged out using the arithmetic mean, we can see 

that the noise components in the signal are suppressed, and a clear positive wave 

appears at 300ms, proving the existence of P300 components.  

4.4.3. Online Stage 

Step 1 The subjects cleaned their foreheads, the edge part of their ears, and the 

electrodes of the Muse EEG equipment using alcohol wipes. The subjects 

then wore the Muse EEG equipment, and the current EEG readings from the 

electrodes were confirmed through an oscilloscope program to ensure that 

the collected EEGs contained minimal or no noise components. 
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Step 2 The stimulator was run, and the space key was randomly pressed to test 

whether the stimulator could receive real-time hit times. 

Step 3 The online P300-based BCI robot control program was run. By default, 

the experiment considered 4 or more space key presses as a command. That 

is, when the subjects visually targeted the stimulator, they selected one 

stimulus unit, and each time this stimulus unit displayed a white circular 

image, they pressed the space key. After pressing, a command was generated. 

Step 4 After 4 or more keypress, the program filtered and averaged the EEGs 

corresponding to the keypress times, and the resulting EEG signal was 

transmitted to the SVM classifier. 

Step 5 The SVM classifier performed classification calculations on the received 

EEG signals. If the classification result was 1, indicating that the transmitted 

EEGs contained P300 components, the experiment was deemed successful. 

Using timestamps, the stimulator label corresponding to the keypress was 

identified, obtaining the position of the stimulus unit that the subject was 

visually targeting at the time of the keypress, i.e., the subject's command. 

This command was then transmitted to the Nao robot, realizing EEG-

controlled robot operation.  

4.4.4. Online Stage Results 

We invited 3 subjects to participate in a total of 500 trials. 406 trials were 

classified successfully. The control commands for the robot given by the subjects 

were random, but they were asked to ensure that the quantity of each command 

was as balanced as possible. The online experiment accuracy rate of the 3 

subjects reached 81.2%.  
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5. Conclusion and Future Work 

As a record of electrical activity of the scalp, the clinical interpretation of EEG 

signals can accurately determine the state of brain activity of patients. At the 

same time, EEG signals are also commonly used in the construction of BCI 

systems. EEG signals are acquired at specific locations through different 

stimulation or evocation patterns, analyzed and classified, and used to control 

external devices such as robots. 

However, EEG signals are often mixed with a large amount of noise due to the 

environment, human factors, and the patient's state. The presence of these noises 

brings great trouble to the clinical diagnosis of doctors, and at the same time, it 

also has a great impact on the signal parsing and categorization tasks of the BCI 

system. Therefore, this paper proposes an EEG signal pre-processing model 

based on the clinical interpretation criteria of EEG signals, considering the 

characteristics of the EEG signals, the state of the patient and the state of the 

brainwave instrumentation equipment. 

Removing temporarily the respiratory machine during the apnea test of brain-

death clinical examination may cause patients irreversible loss of brain function 

or even direct lead to death. Hence, there is an urgent need for a technique which 

could automatically identify brain-death signals rapidly and accurately. As a 

noninvasive and rapid electrical activity examination, EEG could quickly 

provide physicians with cerebral cortex energy analysis and diagnosis 

recommendations.  

We explore the feasibility of classify coma/brain-death signals in the field of 

deep learning and propose a pre-process method of the Brain-Death EEG 

Database. Subsequently, we propose a 1D-CNN model for the classification task 
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of the pre-processed Brain-Death EEG Database. With a 50:50 ratio of targets to 

non-targets, the accuracy of the classification reaches 99.71% and the recall 

score reaches 99.51%, meaning that the 1D-CNN we proposed perform well for 

the classification task of the pre-processed coma/brain-death signals. As a 

measure of a test’ accuracy, the F1-score of the proposed model reaches 99.71\%, 

and the value of the AUC reaches 99.89%, which means the proposed model 

could make a great classification of the test data. Compared with the experiment 

without signal pre-processing, the performance of the 1D-CNN model has 

improved significantly.  

It is a challenging task to distinguish the focal channels by iEEG signals in 

interictal. As the occurrence of seizures causes brain damage, the accurate 

detection of focal location could aid the clinical experts to validate their 

screening of iEEG signals and provide proper treatment to the patients earlier. 

We developed a 1D-CNN model to automate detect the epilepsy focal signals in 

this study. Our developed model can detect the focal signals with an accuracy of 

85.14% by using raw signals without any pre-processing. Compared with the 

other methods, computational reduced significantly, which means the training 

time reduced greatly. We intend to optimize our model by some methods such as 

data augmentation to increase the test accuracy in the future. 

We constructed a P300-Based BCI system, designed and implemented a 3x3 grid 

pattern P300 visual stimulator, wore the Muse EEG equipment to acquire user’s 

EEG signals, and classified the EEG data using a SVM classifier to ultimately 

achieve control over robot movement. Our experiment comprised both offline 

and online stages. The offline stage was primarily for training the SVM classifier 

and verifying its efficacy in identifying EEG signals containing P300 stimulus 

components. The online stage sought to validate the system in actual operation. 
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After analyzing the offline experiment, we found that the SVM classifier 

exhibited well accuracy in identifying EEG signals containing P300 components. 

The online experiment demonstrated that the real-time success rate of the system 

in controlling robot actions could exceed 81.2%, which showcases the feasibility 

and efficacy of our system in practical application.  

In future work, we will try to preprocess the Bern-Barcelona iEEG dataset using 

the proposed signal pre-processing model. In the standard of clinical 

interpretation of iEEG signals, the effective frequency domain of iEEG signals 

is 0.5-200 Hz. iEEG signals, as non-stationary signals, cannot be directly 

extracted using methods such as Fourier transform directly. We will try to 

decompose the iEEG signal using signal processing methods such as 2T-EMD. 

The series of IMFs obtained after decomposition can be viewed as an 

approximate stationary signal in the frequency domain. At this point, the signal 

is subjected to traditional methods such as Fourier transform to obtain the 

frequency domain features of the signal, and then machine learning methods are 

used to classify the frequency domain features, and it is believed that better 

results can be obtained. At the same time, we will try to use signal pre-processing 

methods as well as machine learning methods to acquire EEG signals under 

different states of consciousness and analyze the EEG signals. Human 

consciousness states are roughly classified into awakening, sleep, anesthesia, 

coma, and brain-death. In different states of consciousness, human brain activity 

states should be different. In clinical examination, the points of the patient are 

calculated by Glasgow Coma Scale (GCS), and then the state of the patient is 

judged. In future studies, we will use pre-processing methods as well as machine 

learning methods to classify the different consciousness levels of the human 

brain by quantifying the properties of EEG signals. 
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Study 1. Classification of Coma/Brain-Death EEG Dataset 

Data pre-processing 

1. import pickle   

2. import numpy as np   

3. import matplotlib.pyplot as plt   

4. from scipy.fftpack import fft, ifft   

5. from scipy.signal import butter, lfilter, lfilter_zi   

6. from utils import *   

7.    

8. with open("hd_pkl/1.pkl", "rb") as file:   

9.     data = pickle.load(file)   

10.    

11. data = data['a']   

12. data.shape   

13.    

14. for i in range(len(data)):   

15.     plt.figure(figsize=(15, 1))   

16.     plt.plot(data[i])   

17.     plt.show()   

18.    

19. data_filtered = butter_bandpass_filter(data, 0.1, 40, fs=1000, order=4)      

20.    

21. fft_ = fft(data_filtered[0])   

22. abs_ = np.abs(fft_)   

23. normalization_ = abs_/len(data_filtered[0])   
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24. normalization_half_ = normalization_[:40]   

25.    

26. plt.figure(figsize=(8, 4))   

27. plt.plot(normalization_half_)   

28. plt.ylim(0, 2)   

29. plt.grid()   

30.    

31. data_save = data_filtered[:6]   

32.    

33. slide_len = 20 # seconds   

34. sfreq = 1000   

35. seg_len = slide_len*sfreq   

36. threshold = 75   

37. reject_idx=[]   

38.    

39. data_len = len(data_save[0])   

40. data_num = data_len//seg_len   

41. data_ = np.reshape(data_save[:, :data_num*seg_len], (data_num*6, seg_len))   

42.    

43. for j in range(len(data_)):   

44.     if max(abs(data_[j]))>threshold:   

45.         reject_idx.append(j)   

46.    

47. data_rejected = np.delete(data_, reject_idx, axis=0)   

48.    

49. print(len(reject_idx))   

50. print(np.shape(data_rejected))   

51.    

52. fft_ = fft(data_ori)   

53. abs_ = np.abs(fft_)   

54. normalization_ = abs_/len(data_ori)   

55. normalization_half_ = normalization_[:40]   

56.    

57. plt.figure(figsize=(8, 4))   

58. plt.plot(normalization_half_)   

59. plt.ylim(0, 2)   

60. plt.grid()   

61.    

62. for i in range(len(data_rejected)):   
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63.     plt.figure(figsize=(18, 3))   

64.     plt.plot(data_rejected[i])   

65.     plt.ylim(-80, 80)   

66.     plt.grid()   

67.     plt.show()   

68.    

69. f=plt.figure(figsize=(16, 20), dpi=600);   

70.    

71. data_info={'data':data_rejected[:20], 'loc':['Fp1', 'Fp2', 'F3', 'F4', 'F7', 'F8']}   

72. ax=plt.plot(data_info['data'].T + 75*np.arange(19,-1,-1));   

73.    

74. ax = f.add_subplot()   

75. ax.yaxis.tick_right()   

76. ax.yaxis.set_label_position("right")   

77. ax.set_ylabel('  Scale', fontdict={'size': 20}, rotation=0, x=0, y=0.07)   

78.    

79. plt.plot(np.zeros((20001,20)) + 75*np.arange(19,-1,-1),'--',color='gray');   

80. plt.xlabel('Time / ms', fontsize=20)   

81. # plt.ylabel('Scale', fontsize=20)   

82. # plt.xticks([0, 1, 2, 3, 4])   

83. plt.xticks(fontsize=20)   

84. plt.yticks([0, 75], fontsize=20);   

85. # plt.fill_between(0, 80, color='blue', alpha=.25)   

86. plt.margins(x=0)   

87. plt.margins(y=0)   

88. plt.axis('tight');   

89.    

90. # plt.legend(data_info['loc'], fontsize=16, loc=1);   

91. plt.savefig('pro-processed_dpi600.eps')   
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92.    

93. normalization_rejected_= np.empty((len(data_rejected), 40))   

94. for i in range(len(data_rejected)):   

95.     fft_ = fft(data_rejected[i])   

96.     abs_ = np.abs(fft_)   

97.     normalization_ = abs_/len(data_rejected[i])   

98.     normalization_rejected_[i] = normalization_[:40]   

99.    

100. print(np.shape(normalization_rejected_))   

101. avg = np.mean(normalization_rejected_, axis=0)   

102. avg = np.hstack((np.zeros(1, ), avg))   

103.    

104. plt.figure(figsize=(12, 4))   

105. plt.plot(avg, "-*")   

106. plt.xticks(np.arange(0, 41, 1))   

107. plt.ylim(0, 5)   

108. plt.yticks(np.arange(0, 5.5, 0.5))   

109. plt.grid()   

110.    

111. pkl_filename = "./hd_c/hd_c_01_81.pkl"   

112. with open(pkl_filename, 'wb') as file:   

113.     pickle.dump(data_rejected, file) 
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The Proposed 1D-CNN Model 

Data loader 

1. import numpy as np   

2. from torch.utils.data import Dataset   

3.    

4. ###   

5. class DatasetEEG(Dataset):   

6.     def __init__(self, data, label):   

7.         self.data = data   

8.         self.label = label   

9.    

10.     def __len__(self):   

11.         return self.data.shape[0]   

12.    

13.     def __getitem__(self, index):   

14.         return self.data[index], self.label[index]  

 

Model 

1. import torch   

2. import torch.utils.data   

3. import torch.nn as nn   

4. from torchsummary import summary   

5.    

6. ###   

7. class EpiNet(nn.Module):   

8.     def __init__(self):   

9.         super(EpiNet, self).__init__()   

10.         self.cnn_block = nn.Sequential(   

11.             # Conv Block 1   

12.             nn.Conv1d(1, 32, kernel_size=3, stride=1, padding=1),   

13.             nn.BatchNorm1d(32),   

14.             nn.ReLU(),   

15.             nn.Conv1d(32, 32, kernel_size=3, stride=1, padding=1),   
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16.             nn.BatchNorm1d(32),    

17.             nn.ReLU(),   

18.             nn.MaxPool1d(kernel_size=4, stride=4),   

19.             # Conv Block 2   

20.             nn.Conv1d(32, 64, kernel_size=3, stride=1, padding=1),   

21.             nn.BatchNorm1d(64),   

22.             nn.ReLU(),   

23.             nn.Conv1d(64, 64, kernel_size=3, stride=1, padding=1),   

24.             nn.BatchNorm1d(64),   

25.             nn.ReLU(),   

26.             nn.MaxPool1d(kernel_size=4, stride=4),   

27.             # Conv Block 3   

28.             nn.Conv1d(64, 128, kernel_size=3, stride=1, padding=1),   

29.             nn.BatchNorm1d(128),   

30.             nn.ReLU(),   

31.             nn.Conv1d(128, 128, kernel_size=3, stride=1, padding=1),   

32.             nn.BatchNorm1d(128),   

33.             nn.ReLU(),   

34.             nn.MaxPool1d(kernel_size=4, stride=4),   

35.             # Conv Block 4   

36.             nn.Conv1d(128, 256, kernel_size=3, stride=1, padding=1),   

37.             nn.BatchNorm1d(256),   

38.             nn.ReLU(),   

39.             nn.Conv1d(256, 256, kernel_size=3, stride=1, padding=1),   

40.             nn.BatchNorm1d(256),   

41.             nn.ReLU(),   

42.             nn.MaxPool1d(kernel_size=4, stride=4),   

43.             # Conv Block 5   

44.             nn.Conv1d(256, 512, kernel_size=3, stride=1, padding=1),   

45.             nn.BatchNorm1d(512),   

46.             nn.ReLU(),   

47.             nn.Conv1d(512, 512, kernel_size=3, stride=1, padding=1),   

48.             nn.BatchNorm1d(512),   

49.             nn.ReLU(),   

50.             nn.MaxPool1d(kernel_size=4, stride=4),   

51.             nn.Dropout(0.5),   

52.         )   

53.         # FC Block   

54.         self.fc_block = nn.Sequential(   
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55.             # nn.Linear(19712, 1024),   

56.             nn.Linear(9728, 1024),   

57.             nn.BatchNorm1d(1024),   

58.             nn.ReLU(),   

59.    

60.             nn.Linear(1024, 512),   

61.             nn.BatchNorm1d(512),   

62.             nn.ReLU(),   

63.    

64.             nn.Linear(512, 256),   

65.             nn.BatchNorm1d(256),   

66.             nn.ReLU(),   

67.    

68.             nn.Linear(256, 128),   

69.             nn.BatchNorm1d(128),   

70.             nn.ReLU(),   

71.    

72.             nn.Linear(128, 2)   

73.         )   

74.    

75.         self.initialize_weights()   

76.    

77.     def forward(self, x):   

78.         x = self.cnn_block(x)   

79.         x = x.view(x.size(0), -1)   

80.         x = self.fc_block(x)   

81.         return x   

82.    

83.     def initialize_weights(self):   

84.         for m in self.modules():   

85.             if isinstance(m, nn.Conv1d):   

86.                 nn.init.kaiming_normal_(m.weight, nonlinearity='relu')   

87.                 if m.bias is not None:   

88.                     nn.init.constant_(m.bias, 0)   

89.             elif isinstance(m, nn.BatchNorm1d):   

90.                 nn.init.constant_(m.weight, 1)   

91.                 nn.init.constant_(m.bias, 0)   

92.             elif isinstance(m, nn.Linear):   

93.                 nn.init.normal_(m.weight, 0, 0.01)   
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94.                 nn.init.constant_(m.bias, 0)   

95.    

96. def test():   

97.     net = EpiNet()   

98.     print(net)   

99.     x = torch.randn(32, 1, 1000)   

100.     y = net(x)   

101.     print(y.shape)   

102.        

103. if __name__ == '__main__':  

 

Block representation of the proposed model 

 

Main 

1. import torch   

2. import torch.nn as nn   

3. import torch.optim as optim   

4. import torch.nn.functional as F   

5. import torch.backends.cudnn as cudnn   

6. import numpy as np   

7.    

8. import torchvision   
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9. import torchvision.transforms as transforms   

10.    

11. import os   

12. import csv   

13. import math   

14. import time   

15. import pickle   

16. import h5py   

17. import argparse   

18.    

19. from sklearn.model_selection import KFold   

20. from sklearn.metrics import roc_auc_score, roc_curve, auc, confusion_matri

x   

21. from sklearn import metrics   

22. from model import *   

23. from data_loader import *   

24. from sklearn.utils import shuffle   

25.    

26. from scipy import stats   

27.    

28. os.environ['CUDA_VISIBLE_DEVICES'] = '2'   

29. ###   

30. parser = argparse.ArgumentParser(description='PyTorch 1DCNN')   

31. parser.add_argument('--lr', '-l',    

32.                     default=1e-4,   

33.                     type=float,   

34.                     help='learning rate')   

35. parser.add_argument('--batch_size', '-b',    

36.                     default=128,   

37.                     type=int,   

38.                     help='batch size')   

39. parser.add_argument('--epoch_num', '-e',   

40.                     default=200,   

41.                     type=int,   

42.                     help='epoch num')   

43. parser.add_argument('--resume', '-r',    

44.                     action='store_true',    

45.                     help='resume from checkpoint')   

46. args = parser.parse_args()   
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47.    

48.    

49. ###   

50. device = 'cuda' if torch.cuda.is_available() else 'cpu'   

51. print('\n==> Device :', device)   

52.    

53. ### Training   

54. def train(epoch):   

55.     print('\nEpoch: %d/%d' % (epoch+1, args.epoch_num))   

56.     train_loss, correct, total, t = 0, 0, 0, 0   

57.    

58.     net.train()   

59.    

60.     for batch_idx, (inputs, targets) in enumerate(train_loader):   

61.         t1 = time.time()   

62.    

63.         inputs, targets = inputs.to(device=device, dtype=torch.float), tar

gets.to(device=device, dtype=torch.long)   

64.            

65.         optimizer.zero_grad()   

66.            

67.         outputs = net(inputs)   

68.    

69.         loss = criterion(outputs, targets)   

70.         loss.backward()   

71.         optimizer.step()   

72.    

73.         train_loss += loss.item()   

74.         _, predicted = outputs.max(1)   

75.         total += targets.size(0)   

76.         correct += predicted.eq(targets).sum().item()   

77.    

78.         if batch_idx == 0:   

79.             targets_total = targets   

80.             predicted_total = predicted   

81.         else:   

82.             targets_total = torch.cat((targets_total, targets))   

83.             predicted_total = torch.cat((predicted_total, predicted))   

84.    
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85.         t2 = time.time()   

86.         t += (t2-t1)   

87.    

88.    

89.         tn, fp, fn, tp = metrics.confusion_matrix(targets_total.cpu(), pre

dicted_total.cpu()).ravel()   

90.            

91.         acc = (tn+tp)/(tn+fp+fn+tp)   

92.         pre = tp/(tp+fp)   

93.         rec = tp/(tp+fn)   

94.         spe = tn/(tn+fp)   

95.         f1  = (2*tp)/(2*tp+fp+fn)   

96.    

97.    

98.         L = ['  TR Batch: %d' %(batch_idx+1), '/%d | ' %(len(train_loader)

),   

99.              'Loss: %.4f | ' %(train_loss/(batch_idx+1)),   

100.              'Acc: %.4f | ' %acc,   

101.              'Pre: %.4f | ' %pre,   

102.              'Rec: %.4f | ' %rec,   

103.              'Spe: %.4f | ' %spe,   

104.              'F1: %.4f | ' %f1,   

105.              'Time: %.3f' %t,   

106.              ' <- %.3f' %((t2-t1)*(len(train_loader) - batch_idx -1))]   

107.         L = ''.join(L)   

108.    

109.         print('\r' + L, end='', flush=True)   

110.     print()   

111.    

112.     ###   

113.     f = open("./result/log.txt", "a+")   

114.     f.write('Epoch ' + str(epoch+1) + '\n' + L + '\n')   

115.     f.close()   

116.    

117.     ###   

118.     result[0, epoch, 0] = train_loss/(batch_idx+1)   

119.     result[0, epoch, 1] = acc   

120.     result[0, epoch, 2] = pre   

121.     result[0, epoch, 3] = rec   
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122.     result[0, epoch, 4] = spe   

123.     result[0, epoch, 5] = f1   

124.    

125.    

126. ###   

127. def test(epoch):   

128.     global best_acc   

129.     net.eval()   

130.     test_loss, correct, total = 0, 0, 0   

131.     target_total = []   

132.     socre_total = []   

133.     y_score_total = []   

134.        

135.     # y_score_all   

136.        

137.     with torch.no_grad():   

138.         for batch_idx, (inputs, targets) in enumerate(test_loader):   

139.             inputs, targets = inputs.to(device=device, dtype=torch.float)

, targets.to(device=device, dtype=torch.long)   

140.                

141.             outputs = net(inputs)   

142.                

143.             loss = criterion(outputs, targets)   

144.    

145.             test_loss += loss.item()   

146.             score, predicted = outputs.max(1)   

147. #             

148.             total += targets.size(0)   

149.             correct += predicted.eq(targets).sum().item()   

150.    

151.             ###   

152.             if batch_idx == 0:   

153.                 targets_total = targets   

154.                 predicted_total = predicted   

155.                 score_total = score   

156.                 y_score_total = probabilities   

157.             else:   

158.                 targets_total = torch.cat((targets_total, targets))   
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159.                 predicted_total = torch.cat((predicted_total, predicted))

   

160.                 score_total = torch.cat((score_total, score))   

161.                 y_score_total = torch.cat((y_score_total, probabilities))

   

162.                

163.             tn, fp, fn, tp = metrics.confusion_matrix(targets_total.cpu()

, predicted_total.cpu()).ravel()   

164.                

165.             # print('score_total:', score_total)   

166.                

167.             acc = (tn+tp)/(tn+fp+fn+tp)   

168.             pre = tp/(tp+fp)   

169.             rec = tp/(tp+fn)   

170.             spe = tn/(tn+fp)   

171.             f1  = (2*tp)/(2*tp+fp+fn)   

172.                

173.    

174.             L = ['  TEST Result:    | ',   

175.                  'Loss: %.4f | ' %(test_loss/(batch_idx+1)),   

176.                  'Acc: %.4f | ' %acc,   

177.                  'Pre: %.4f | ' %pre,   

178.                  'Rec: %.4f | ' %rec,   

179.                  'Spe: %.4f | ' %spe,   

180.                  'F1: %.4f | ' %f1]   

181.             L = ''.join(L)   

182.    

183.             print('\r' + L, end='', flush=True)   

184.            

185.         ###   

186.         f = open("./result/log.txt", "a+")   

187.         f.write(L + '\n')   

188.         f.close()   

189.    

190.         ###   

191.         result[1, epoch, 0] = test_loss/(batch_idx+1)   

192.         result[1, epoch, 1] = acc   

193.         result[1, epoch, 2] = pre   

194.         result[1, epoch, 3] = rec   



 73 

195.         result[1, epoch, 4] = spe   

196.         result[1, epoch, 5] = f1   

197.            

198.     y_true = targets_total.cpu().numpy()   

199.     y_score = y_score_total.cpu().numpy()   

200.    

201.     # Save checkpoint.   

202.     acc = 100.*correct/total   

203.     if acc > best_acc:   

204.         print('Saving...')   

205.    

206.         f = open("./result/log.txt", "a+")   

207.         f.write('Saving...' + '\n')   

208.         f.close()   

209.    

210.         state = {   

211.             'net': net.state_dict(),   

212.             'acc': acc,   

213.             'epoch': epoch,   

214.         }   

215.         if not os.path.isdir('checkpoint'):   

216.             os.mkdir('checkpoint')   

217.         torch.save(state, './checkpoint/ckpt.pth')   

218.         best_acc = acc   

219.            

220.     return y_true, y_score   

221.    

222. ###   

223. if __name__ == '__main__':   

224.    

225.     ###   

226.     best_acc = 0  # best test accuracy   

227.     start_epoch = 0  # start from epoch 0 or last checkpoint epoch   

228.    

229.     ###   

230.     torch.manual_seed(1234)   

231.     K = 5   

232.     SEED = 1230   

233.     shuffle = True   
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234.    

235.     result = np.zeros([2, args.epoch_num, 6])   

236.     all_result = np.zeros([K, 2, args.epoch_num, 6])   

237.    

238.     ###   

239.     open('./result/log.txt', 'w').close()   

240.        

241.    

242.     ###   

243.     path = open('./data/hsd_data_8700_20000.pkl', 'rb')   

244.     data = pickle.load(path)   

245.     path.close()   

246.    

247.     path = open('./data/hsd_label_8700_20000.pkl', 'rb')   

248.     label = pickle.load(path)   

249.     path.close()   

250.        

251.     data = np.asarray(data, dtype = float)   

252.     label = np.asarray(label, dtype = float)   

253.    

254.     y_true_all = np.empty((K, int(len(data)/K)))    

255.     y_score_all = np.empty((K, int(len(data)/K)))   

256.    

257.     print("data type: ", type(data))   

258.     print("data shape: ", np.shape(data))   

259.     print("label shape: ", np.shape(label))   

260.     ###   

261.     kf = KFold(n_splits=K, random_state=SEED, shuffle=shuffle)   

262.     kf_num = 0   

263.    

264.     for train_index, test_index in kf.split(data):   

265.         print('\n' + '\n' + 'KFold :', kf_num+1)   

266.    

267.         ###   

268.         f = open("./result/log.txt", "a+")   

269.         f.write('\nKFold ' + str(kf_num+1) + '\n')   

270.         f.close()   

271.    

272.         ###   
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273.         train_data = data[train_index, :]   

274.         train_data = train_data[:, np.newaxis, :]   

275.         train_label = label[train_index]   

276.    

277.         test_data = data[test_index, :]   

278.         test_data = test_data[:, np.newaxis, :]   

279.         test_label = label[test_index]   

280.    

281.         ###   

282.         train_set = DatasetEEG(data=train_data, label=train_label)   

283.         train_loader = torch.utils.data.DataLoader(train_set,    

284.                                                batch_size=args.batch_size

,   

285.                                                shuffle=True,    

286.                                                num_workers=2)   

287.    

288.         test_set = DatasetEEG(data=test_data, label=test_label)   

289.         test_loader = torch.utils.data.DataLoader(test_set,    

290.                                               batch_size=args.batch_size,

   

291.                                               shuffle=True,    

292.                                               num_workers=2)   

293.    

294.         ### Model   

295.         net = EpiNet().to(device=device)   

296.         criterion = nn.CrossEntropyLoss()   

297.         if kf_num == 0:   

298.             summary(net, input_size=(1, len(data[0])))   

299.    

300.         ###   

301.         for epoch in range(start_epoch, start_epoch + args.epoch_num):   

302.    

303.             ###   

304.             if epoch < 50:   

305.                 lr = args.lr   

306.             else:   

307.                 lr = lr*0.995   

308.    

309.             ###   
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310.             optimizer = optim.Adam(net.parameters(), lr=lr,    

311.                                    betas=(0.9, 0.999), eps=1e-08,    

312.                                    weight_decay=0, amsgrad=False)   

313.    

314.             ###   

315.             train(epoch)   

316.             y_true, y_score = test(epoch)   

317. #             print(y_true)   

318. #             print(y_score)   

319.             if epoch==args.epoch_num-1:   

320. #             if epoch==0:   

321.                 y_true_all[kf_num] = y_true   

322.                 y_score_all[kf_num] = y_score   

323.                 # print(y_true)   

324.                 # print(y_score)   

325.             if kf_num==K-1:   

326.                 save_file_path = open('./result/y_true_all.pkl','wb')   

327.                 pickle.dump(y_true_all, save_file_path)   

328.                 save_file_path.close()   

329.                    

330.                 save_file_path = open('./result/y_score_all.pkl','wb')   

331.                 pickle.dump(y_score_all, save_file_path)   

332.                 save_file_path.close()   

333.         ###   

334.         all_result[kf_num, :, :, :] = result[:, :, :]   

335.         kf_num += 1   

336.     ###   

337.     save_file_path = open('./result/result.pkl','wb')   

338.     pickle.dump(all_result, save_file_path) 

 

Accuracy                                     ROC 



 77 

Study 2. The Automated Localization of Epileptic Foci 

The Bern-Barcelona iEEG Database 

1. import numpy as np   

2. import pickle   

3. import matplotlib.pyplot as plt   

4.    

5. path_f = open('bern_f_7500_10240.pkl','rb')   

6. data_f = pickle.load(path_f)   

7. path_f.close()   

8.    

9. path_n = open('bern_n_7500_10240.pkl','rb')   

10. data_n = pickle.load(path_n)   

11. path_n.close()   

12.    

13. x = np.arange(0, 20, 1/512)   

14.    

15. plt.figure(figsize = (8,3), dpi = 1000)   

16. plt.plot(x, data_n[10])   

17. plt.xlabel('Time [s]')   

18. plt.ylabel('Amplitude [µV]')    

19. plt.title('An example of the nonfocal iEEG signal')   

20. plt.tight_layout()   

21.    

22. plt.savefig('ieegnonfocal.png')   

23.    

24. plt.show()  
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The Proposed 1D-CNN Model 

1. import numpy as np    

2. import keras   

3. import tensorflow as tf   

4. import os   

5. import sys   

6. import pickle   

7.    

8. from keras.models import Sequential   

9. from keras.layers import Dense, Dropout, Activation, Flatten, MaxPool1D, B

atchNormalization   

10. from keras.utils import np_utils   

11. from keras import backend as K    

12. from keras.layers.convolutional import Conv1D   

13. from keras.optimizers import SGD, Adam, RMSprop   

14. from keras.callbacks import Callback   

15.    

16. from sklearn.utils import shuffle   

17. from sklearn.metrics import roc_auc_score, roc_curve, auc, confusion_matri

x   

18. from sklearn.model_selection import KFold   

19.    

20. import matplotlib.pyplot as plt   

21.    

22. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.666)     

23. sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))     

24.    

25. y_true = np.zeros((0,))    

26. y_score = np.zeros((0,))    

27. CM = np.zeros((2,2))    

28.    

29. class ROCCallback(Callback):   

30.     def __init__(self, model, val_data, val_label):   

31.         self.model = model   

32.         self.val_data = val_data   

33.         self.val_label = val_label   

34.    
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35.     def on_epoch_end(self, epoch, logs):   

36.         global y_true   

37.         global y_score   

38.         global CM   

39.    

40.         pred_label = self.model.predict(self.val_data)   

41.         cm = confusion_matrix(val_label.argmax(axis=1), np.round(pred_labe

l).argmax(axis=1))   

42.    

43.         val_label_0 = [i[0] for i in val_label]   

44.         pred_label_0 = [i[0] for i in pred_label]   

45.    

46.         y_true = np.concatenate((y_true, val_label_0))   

47.         y_score = np.concatenate((y_score, pred_label_0))   

48.         CM = np.concatenate((CM, cm))   

49.    

50. batch_size = 128   

51. nb_classes = 2   

52. epochs = 200   

53. nb1_filters = 2   

54. nb2_filters = 4   

55. nb3_filters = 8   

56. nb4_filters = 16   

57. nb5_filters = 32   

58. nb6_filters = 64   

59. pool_size = 2   

60. c_kernel_size = 3   

61. input_shape = (20*512, 1)   

62. n_splits = 10   

63. K_acc = []   

64. train_acc = []   

65. train_loss = []   

66. val_acc = []   

67. val_loss = []   

68. test_acc = []   

69. test_loss = []   

70.    

71. path_f = open('bern_f_7500_10240.pkl','rb')   

72. data_f = pickle.load(path_f)   
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73. path_f.close()   

74.    

75. path_n = open('bern_n_7500_10240.pkl','rb')   

76. data_n = pickle.load(path_n)   

77. path_n.close()   

78.    

79. data = np.vstack((data_f, data_n))   

80. label = np.hstack((np.ones(7500,),np.zeros(7500,))).T   

81.    

82. data = shuffle(data, random_state = 1)   

83. label = shuffle(label, random_state = 1)   

84.    

85. kf = KFold(n_splits = n_splits)   

86. for train_index, test_index in kf.split(data):   

87.    

88.     train_val_data, test_data = data[train_index], data[test_index]   

89.     train_val_label, test_label = label[train_index], label[test_index]   

90.    

91.     train_data = train_val_data[:12000]   

92.     train_label = train_val_label[:12000]   

93.     val_data = train_val_data[12000:]   

94.     val_label = train_val_label[12000:]   

95.    

96.     train_data = train_data.reshape(train_data.shape[0], 10240, 1)   

97.     test_data = test_data.reshape(test_data.shape[0], 10240, 1)   

98.     val_data = val_data.reshape(val_data.shape[0], 10240, 1)   

99.    

100.     train_label = np_utils.to_categorical(train_label, nb_classes)   

101.     test_label = np_utils.to_categorical(test_label, nb_classes)   

102.     val_label = np_utils.to_categorical(val_label, nb_classes)   

103.    

104.     model = Sequential()   

105.    

106.     model.add(Conv1D(nb1_filters, c_kernel_size, strides = 1, padding = '

same',   

107.         input_shape = input_shape, activation = 'relu'))   

108.     model.add(Dropout(0.2))    

109.     model.add(MaxPool1D(pool_size = pool_size, strides = 2, padding = 'va

lid'))   
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110.     model.add(BatchNormalization(axis = 1, momentum = 0.99, epsilon = 0.0

01))   

111.    

112.     model.add(Conv1D(nb2_filters, c_kernel_size, strides = 1, padding = '

same',   

113.         input_shape = input_shape, activation = 'relu'))   

114.     model.add(MaxPool1D(pool_size = pool_size, strides = 2, padding = 'va

lid'))   

115.    

116.     model.add(Conv1D(nb3_filters, c_kernel_size, strides = 1, padding = '

same',   

117.         input_shape = input_shape, activation = 'relu'))   

118.     model.add(MaxPool1D(pool_size = pool_size, strides = 2, padding = 'va

lid'))   

119.    

120.     model.add(Conv1D(nb4_filters, c_kernel_size, strides = 1, padding = '

same',   

121.         input_shape = input_shape, activation = 'relu'))   

122.     model.add(MaxPool1D(pool_size = pool_size, strides = 2, padding = 'va

lid'))   

123.    

124.     model.add(Conv1D(nb5_filters, c_kernel_size, strides = 1, padding = '

same',   

125.         input_shape = input_shape, activation = 'relu'))   

126.     model.add(MaxPool1D(pool_size = pool_size, strides = 2, padding = 'va

lid'))   

127.    

128.     model.add(Conv1D(nb6_filters, c_kernel_size, strides = 1, padding = '

same',   

129.         input_shape = input_shape, activation = 'relu'))   

130.     model.add(MaxPool1D(pool_size = pool_size, strides = 2, padding = 'va

lid'))   

131.    

132.     model.add(Dropout(0.2))   

133.    

134.     model.add(Flatten())   

135.    

136.     model.add(Dense(128))   

137.     model.add(Activation('relu'))   
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138.     model.add(Dropout(0.5))   

139.    

140.     model.add(Dense(nb_classes))   

141.     model.add(Activation('softmax'))   

142.     adam = Adam(lr = 2.5e-4)   

143.     # adam = keras.optimizers.SGD(lr = 2.5e-

5, momentum = 0.0, decay = 0.05, nesterov = True)   

144.     model.compile(loss = 'categorical_crossentropy', optimizer = adam, me

trics = ['accuracy'])   

145.    

146.     history = model.fit(train_data, train_label, batch_size = batch_size,

 epochs = epochs,   

147.         verbose = 1, validation_data = (val_data, val_label), callbacks =

 [ROCCallback(model, val_data, val_label)])   

148.    

149.     score = model.evaluate(test_data, test_label, batch_size = batch_size

, verbose = 1)   

150.    

151.     print('Test loss:', score[0])   

152.     print('Test accuracy:', score[1])   

153.    

154.     K_acc.append(score[1])   

155.    

156.     y_train_accuracy = history.history['acc']   

157.     y_train_loss = history.history['loss']   

158.     y_val_accuracy = history.history['val_acc']   

159.     y_val_loss = history.history['val_loss']   

160.    

161.     train_acc.append(y_train_accuracy)   

162.     train_loss.append(y_train_loss)   

163.     val_acc.append(y_val_accuracy)   

164.     val_loss.append(y_val_loss)   

165.     test_acc.append(score[1])   

166.     test_loss.append(score[0])   

167.    

168. y = {'train_acc': train_acc, 'train_loss': train_loss, 'val_acc': val_acc

, 'val_loss':val_loss, 'test_acc': score[1], 'test_loss': score[0], 'K_acc':K_acc

}   

169.    



 83 

170. filename = os.path.basename(__file__)   

171. save_file = open('%s.pkl'%filename, 'wb')   

172. pickle.dump(y, save_file)   

173. save_file.close()   

174.    

175. save_file = open('y_true.pkl', 'wb')   

176. pickle.dump(y_true, save_file)   

177. save_file.close()   

178.    

179. save_file = open('y_score.pkl', 'wb')   

180. pickle.dump(y_score, save_file)   

181. save_file.close()   

182.    

183. save_file = open('CM.pkl', 'wb')   

184. pickle.dump(CM, save_file)   

185. save_file.close()   

186.    

187. print(K_acc)   

188. print(np.mean(K_acc)) 

  

Parameter values              Block representation of the developed model 
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Accuracy                                     ROC 

 

Study 3. Construct of High-Precision BCI System 

EEG signals pre-processing 

1. import pandas as pd   

2. import numpy as np   

3.    

4. from matplotlib import pyplot as plt   

5. from utils import readname, butter_bandpass_filter   

6.    

7. import os   

8. import pickle   

9.    

10. names = readname('./P300/subject6/')   

11.    

12. if '.DS_Store' in names:   

13.     names.remove('.DS_Store')   

14.    

15. arr_x = np.zeros((1, 7))   

16.    

17. for i in names:   

18.     # tempData =  pd.read_csv("./data/"+i, skiprows=14, engine = "python",

 header=None, delim_whitespace=True).to_numpy()   

19.     tempData =  pd.read_csv("./P300/subject6/"+i, skiprows=14).to_numpy() 

  

20.     arr_x = np.vstack((arr_x, tempData))   
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21.    

22. data_raw = arr_x[1:].T[1:5]   

23. label_raw = arr_x[1:].T[6]   

24. print(np.shape(data_raw))   

25.    

26. max_apt = np.max(abs(data_raw), axis=1)   

27. max_apt   

28.    

29. from sklearn.utils import shuffle   

30. from scipy.signal import detrend   

31.    

32. # detrened   

33. data_detrended = detrend(data_raw, axis=-

1, type='constant')  # constant or linear   

34.    

35. # filter   

36. data_filted = butter_bandpass_filter(data_raw, 1, 30, 256)   

37.    

38. plt.figure(figsize=(24, 18))   

39.    

40. plt.subplot(421)   

41. plt.plot(data_raw[0])   

42. plt.title('EEG signals before denoise and filt -- TP9, AF7, AF8,TP10')   

43. plt.xlabel('TP9 n_samples')   

44. plt.ylabel('amplitude / µV')   

45. plt.ylim((-max_apt[0], max_apt[0]))   

46.    

47. plt.subplot(423)   

48. plt.plot(data_raw[1])   

49. plt.xlabel('AF7 n_samples')   

50. plt.ylabel('amplitude / µV')   

51. plt.ylim((-max_apt[1], max_apt[1]))   

52.    

53. plt.subplot(425)   

54. plt.plot(data_raw[2])   

55. plt.xlabel('AF8 n_samples')   

56. plt.ylabel('amplitude / µV')   

57. plt.ylim((-max_apt[2], max_apt[2]))   

58.    
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59. plt.subplot(427)   

60. plt.plot(data_raw[3])   

61. plt.xlabel('TP10 n_samples')   

62. plt.ylabel('amplitude / µV')   

63. plt.ylim((-max_apt[3], max_apt[3]))   

64.    

65. plt.subplot(422)   

66. plt.plot(data_filted[0])   

67. plt.title('EEG signals after filt -- TP9, AF7, AF8,TP10')   

68. plt.xlabel('TP9 n_samples')   

69. plt.ylabel('amplitude / µV')   

70. plt.ylim((-max_apt[0], max_apt[0]))   

71.    

72. plt.subplot(424)   

73. plt.plot(data_filted[1])   

74. plt.xlabel('AF7 n_samples')   

75. plt.ylabel('amplitude / µV')   

76. plt.ylim((-max_apt[1], max_apt[1]))   

77.    

78. plt.subplot(426)   

79. plt.plot(data_filted[2])   

80. plt.xlabel('AF8 n_samples')   

81. plt.ylabel('amplitude / µV')   

82. plt.ylim((-max_apt[2], max_apt[2]))   

83.    

84. plt.subplot(428)   

85. plt.plot(data_filted[3])   

86. plt.xlabel('TP10 n_samples')   

87. plt.ylabel('amplitude / µV')   

88. plt.ylim((-max_apt[3], max_apt[3]))   

89.    

90. plt.show()   

91.    
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92. ### get data by channels   

93. tp9 = data_filted[0]   

94. af7 = data_filted[1]   

95. af8 = data_filted[2]   

96. tp10 = data_filted[3]   

97. epoch_start = 0   

98. epoch_duration = 1   

99. epoch_len = int(256*epoch_duration)   

100. epoch_end = epoch_start + epoch_len   

101. random_state = 1   

102.    

103. tp9_10 = np.vstack((tp9, tp10)).sum(axis=0)/2   

104.    

105. yy_0 = []   

106. yy_1 = []   

107.    

108. for i in range(len(label_raw)):   

109.     if label_raw[i]==1:   

110.         yy_0.append(i)   

111.    

112. for i in range(len(label_raw)):   

113.     if label_raw[i]==2:   

114.         yy_1.append(i)           

115.    

116. a_len = int(len(tar)/4)   

117. a = np.empty((a_len, epoch_len))  # -3   

118. for i in range(a_len):   
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119.     aa = np.sum([tar[i*4+0], tar[i*4+1], tar[i*4+2], tar[i*4+3]], axis=0)

/4   

120.     a[i] = aa   

121.    

122. b_len = int(len(ntar)/4)   

123. b = np.empty((b_len, epoch_len))  # -3   

124. for i in range(b_len):   

125.     bb = np.sum([ntar[i*4+0], ntar[i*4+1], ntar[i*4+2], ntar[i*4+3]], axi

s=0)/4   

126.     b[i] = bb   

127.    

128. yy = np.max([yy_1[-1], yy_0[-1]])   

129. n_padding_0 = epoch_len-(len(label_raw)-yy)%epoch_len   

130. print('n_padding_0 = %d' % n_padding_0)   

131.    

132. if len(label_raw)-yy < epoch_len:   

133.     tp9_10 = np.hstack((tp9_10, np.zeros((n_padding_0, ))))   

134.                           

135. _, counts = np.unique(label_raw, return_counts=True)   

136. print("n_targets:", counts[2], "n_nontargets:", counts[1])   

137.    

138.    

139. ### get data by label   

140. tar = np.empty((counts[2], epoch_len))   

141. m = 0   

142. for i in range(len(label_raw)):   

143.     if label_raw[i]==2:   

144.         tar[m] = tp9_10[i+epoch_start:i+epoch_end]   

145.         m += 1   

146.    

147. ntar = np.empty((counts[1], epoch_len))   

148. n = 0   

149. for i in range(len(label_raw)):   

150.     if label_raw[i]==1:   

151.         ntar[n] = tp9_10[i+epoch_start:i+epoch_end]   

152.         # print('success:', i, n)   

153.         n += 1   

154.    

155.    



 89 

156. ### rejeck blink   

157. blink_threshold = 35   

158. blk_idx_tar = []   

159. for i in range(len(tar)):   

160.     itar_max = np.max(abs(tar[i]))   

161.     if itar_max>blink_threshold:   

162.         blk_idx_tar.append(i)   

163. tar = np.delete(tar, blk_idx_tar, axis=0)   

164.    

165. blk_idx_ntar = []   

166. for i in range(len(ntar)):   

167.     intar_max = np.max(abs(ntar[i]))   

168.     if intar_max>blink_threshold:   

169.         blk_idx_ntar.append(i)   

170. ntar = np.delete(ntar, blk_idx_ntar, axis=0)   

171.    

172. tar = shuffle(tar, random_state = random_state)   

173. ntar = shuffle(ntar, random_state = random_state)   

174.    

175.    

176. ### baseline   

177. if epoch_start<0:   

178.     for i in range(len(tar)):   

179.         itar_mean = np.mean(tar[i, :epoch_start])   

180.         tar[i] = tar[i]-itar_mean   

181.    

182.     for i in range(len(ntar)):   

183.         intar_mean = np.mean(ntar[i, :epoch_start])   

184.         ntar[i] = ntar[i]-intar_mean   

185.    

186.            

187. print("n_targets shape (after reject):", np.shape(tar), "n_nontargets sha

pe:", np.shape(ntar))   

188. print(len(blk_idx_tar), len(blk_idx_ntar))   

189.    

190. for i in range(len(tar)):   

191.     plt.plot(tar[i])   

192.        

193. x_ticks = np.linspace(0, epoch_len, int(epoch_len/25.6)+1)   
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194. # x_label = np.arange(0, (int(epoch_len/25.6)+1)*100, 100)   

195. x_label = np.arange((int(epoch_start/25.6))*100, ((int(epoch_len/25.6)+1)

*100)+((int(epoch_start/25.6))*100), 100)   

196. plt.title('target before arithmetic mean')   

197. plt.xlabel('time / ms')   

198. plt.ylabel('amplitude / µV')   

199.    

200. # plt.vlines(51.2, -200, 200, colors = "grey", linestyles = "dashed")   

201. # plt.vlines(128, -200, 200, colors = "red", linestyles = "dashed")   

202.    

203. plt.xlim((0, epoch_len))   

204. plt.ylim((-200, 200))   

205. plt.xticks(x_ticks, x_label)   

206. plt.show()   

207.    

 

208. for i in range(len(a)):   

209.     plt.plot(a[i])   

210.        

211. x_ticks = np.linspace(0, epoch_len, int(epoch_len/25.6)+1)   

212. x_label = np.arange((int(epoch_start/25.6))*100, ((int(epoch_len/25.6)+1)

*100)+((int(epoch_start/25.6))*100), 100)   

213. plt.title('target after arithmetic mean (N=4)')   

214. plt.xlabel('time / ms')   

215. plt.ylabel('amplitude / µV')   

216.    

217. # plt.vlines(51.2, -200, 200, colors = "grey", linestyles = "dashed")   

218. # plt.vlines(128, -200, 200, colors = "red", linestyles = "dashed")   

219.    

220. plt.xlim((0, epoch_len))   

221. plt.ylim((-200, 200))   

222. plt.xticks(x_ticks, x_label)   
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223. plt.show()   

 

224. for i in range(len(ntar)):   

225.     plt.plot(ntar[i])   

226.        

227. x_ticks = np.linspace(0, epoch_len, int(epoch_len/25.6)+1)   

228. x_label = np.arange((int(epoch_start/25.6))*100, ((int(epoch_len/25.6)+1)

*100)+((int(epoch_start/25.6))*100), 100)   

229. plt.title('non-target before arithmetic mean')   

230. plt.xlabel('time / ms')   

231. plt.ylabel('amplitude / µV')   

232.    

233. # plt.vlines(51.2, -200, 200, colors = "grey", linestyles = "dashed")   

234. # plt.vlines(128, -200, 200, colors = "red", linestyles = "dashed")   

235.    

236. plt.xlim((0, epoch_len))   

237. plt.ylim((-200, 200))   

238. plt.xticks(x_ticks, x_label)   

239. plt.show()   

240.    

 

241. for i in range(len(b)):   

242.     plt.plot(b[i])   

243.        

244. x_ticks = np.linspace(0, epoch_len, int(epoch_len/25.6)+1)   
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245. x_label = np.arange((int(epoch_start/25.6))*100, ((int(epoch_len/25.6)+1)

*100)+((int(epoch_start/25.6))*100), 100)   

246. plt.title('non-target after arithmetic mean (N=4)')   

247. plt.xlabel('time / ms')   

248. plt.ylabel('amplitude / µV')   

249.    

250. # plt.vlines(51.2, -200, 200, colors = "grey", linestyles = "dashed")   

251. # plt.vlines(128, -200, 200, colors = "red", linestyles = "dashed")   

252.    

253. plt.xlim((0, epoch_len))   

254. plt.ylim((-200, 200))   

255. plt.xticks(x_ticks, x_label)   

256. plt.show()   

 

257.    

258. tar_sum=tar.sum(axis=0)/len(tar)   

259. ntar_sum=ntar[0:len(tar)].sum(axis=0)/len(ntar)   

260. x = range(epoch_len)   

261. x_ticks = np.linspace(0, epoch_len, int(epoch_len/25.6)+1)   

262. x_label = np.arange((int(epoch_start/25.6))*100, ((int(epoch_len/25.6)+1)

*100)+((int(epoch_start/25.6))*100), 100)   

263.    

264. plt.plot(x, tar_sum, label='target')   

265. plt.plot(x, ntar_sum, label='non-target')   

266.    

267. plt.title('Presentation of target and non-

target signals in epoch arithmetic mean')   

268. plt.xlabel('time / ms')   

269. plt.ylabel('amplitude / µV')   

270.    

271. # plt.vlines(51.2, -200, 200, colors = "grey", linestyles = "dashed")   

272. # plt.vlines(128, -200, 200, colors = "red", linestyles = "dashed")   
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273.    

274. plt.xlim((0, epoch_len))   

275. plt.xticks(x_ticks, x_label)   

276. plt.ylim((-10, 10))   

277. plt.legend()   

278. plt.show()   

279.    

 

280. idx = len(a)   

281. td_rate = 0.8   

282. data_1 = a  # a, tar   

283.    

284. data_0 = shuffle(b, random_state = random_state)  # b, ntar   

285. data_0 = data_0[:idx]   

286.    

287. y0 = np.zeros(idx)   

288. y1 = np.ones(idx)   

289.    

290. data__ = np.vstack((data_0, data_1))   

291. label__ = np.hstack((y0, y1))   

292.    

293. data = shuffle(data__, random_state = random_state)   

294. label = shuffle(label__, random_state = random_state)   

295.    

296. x_train = data[:int(idx*2*td_rate)]   

297. x_test = data[int(idx*2*td_rate):]   

298.    

299. y_train = label[:int(idx*2*td_rate)]   

300. y_test = label[int(idx*2*td_rate):]   

301.    

302. import numpy as np   

303. import matplotlib.pyplot as plt   
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304.    

305. from sklearn import svm, datasets   

306. from sklearn.metrics import auc   

307. from sklearn.metrics import plot_roc_curve   

308. from sklearn.model_selection import StratifiedKFold   

309.    

310. from numpy import mean   

311. from numpy import std   

312.    

313. from sklearn.model_selection import KFold, RepeatedKFold   

314. from sklearn.model_selection import cross_val_score   

315. from sklearn.linear_model import LogisticRegression   

316.    

317. # Add noisy features   

318. random_state_clf = np.random.RandomState(0)   

319.    

320. # #######################################################################

######   

321. # Classification and ROC analysis   

322.    

323. # Run classifier with cross-validation and plot ROC curves   

324.    

325. cv = KFold(n_splits=2, random_state=random_state_clf, shuffle=True)   

326. # cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=random_state)

   

327. # cv = StratifiedKFold(n_splits=10)   

328.    

329. clf_SVM = svm.SVC(kernel='linear', probability=True,   

330.                      random_state=random_state_clf)   

331. clf_LR = LogisticRegression(random_state=random_state)   

332.    

333. clf = clf_SVM   

334. tprs = []   

335. aucs = []   

336. accs = []   

337. mean_fpr = np.linspace(0, 1, 100)   

338.    

339. fig, ax = plt.subplots()   

340. for i, (train, test) in enumerate(cv.split(data__, label__)):   
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341.     clf.fit(data[train], label[train])   

342.     acc = clf.score(data[test], label[test])   

343.     viz = plot_roc_curve(clf, data[test], label[test],   

344.                          name='ROC fold {}'.format(i),   

345.                          alpha=0.3, lw=1, ax=ax)   

346.     interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr)   

347.     interp_tpr[0] = 0.0   

348.     tprs.append(interp_tpr)   

349.     aucs.append(viz.roc_auc)   

350.     accs.append(acc)   

351.     print('Fold %d: Accuracy=%0.3f' % (i, acc))   

352.    

353. pkl_filename_svm = "clf_4sum-SVM-RKF30.pkl"   

354. pkl_filename_lr = "clf_4sum-LR-RKF30.pkl"   

355.    

356. with open(pkl_filename_svm, 'wb') as file:   

357.     pickle.dump(clf, file)   

358. print('Save model success!')   

359.    

360. print('accuracy:%0.3f' % (np.mean(accs)))   

361.        

362. ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',   

363.         label='Chance', alpha=.8)   

364.    

365. mean_tpr = np.mean(tprs, axis=0)   

366. mean_tpr[-1] = 1.0   

367. mean_auc = auc(mean_fpr, mean_tpr)   

368. std_auc = np.std(aucs)   

369. ax.plot(mean_fpr, mean_tpr, color='b',   

370.         label=r'Mean ROC (AUC = %0.3f $\pm$ %0.3f)' % (mean_auc, std_auc)

,   

371.         lw=2, alpha=.8)   

372.    

373. std_tpr = np.std(tprs, axis=0)   

374. tprs_upper = np.minimum(mean_tpr + std_tpr, 1)   

375. tprs_lower = np.maximum(mean_tpr - std_tpr, 0)   

376. ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2,

   

377.                 label=r'$\pm$ 1 std. dev.')   
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378.    

379. ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05],   

380.        title="Receiver operating characteristic example")   

381. ax.legend(loc="lower right")   

382. plt.show()  

 

                   ROC 

 

P300 Stimulator 

1. import pygame   

2. import time   

3. import numpy as np   

4. import random   

5. from pylsl import StreamInfo, StreamOutlet   

6.    

7. from sklearn.utils import shuffle   

8. from pygame.locals import (   

9.     K_SPACE,   

10.     QUIT,   

11. )   

12.    

13. # Initialize pygame   

14. pygame.init()   

15. clock = pygame.time.Clock()   

16.    

17. epoch_time = 400   

18. delay_time = 100   

19.    

20.    
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21. class Stim(pygame.sprite.Sprite):   

22.     def __init__(self, rect, screen, stats):   

23.         super(Stim, self).__init__()   

24.         self.rect = rect   

25.         self.screen = screen   

26.         self.stats = stats   

27.         self.image0 = pygame.image.load('./stim_pic/0.png')   

28.         self.image1 = pygame.image.load('./stim_pic/1.png')   

29.         self.surf = pygame.image.load("./stim_pic/press.png").convert()   

30.    

31.     def draw(self):   

32.         if self.stats == -1:   

33.             self.surf = self.surf   

34.         elif self.stats == 0:   

35.             self.surf = pygame.transform.scale(self.image0, (199, 199)).co

nvert()   

36.         elif self.stats == 1:   

37.             self.surf = pygame.transform.scale(self.image1, (199, 199)).co

nvert()   

38.         self.screen.blit(self.surf, self.rect)   

39.    

40.     def kill(self):   

41.         self.kill()   

42.    

43.    

44. class Button(pygame.sprite.Sprite):   

45.     def __init__(self, rect, screen, stats):   

46.         super(Button, self).__init__()   

47.         self.rect = rect   

48.         self.screen = screen   

49.         self.stats = stats   

50.         self.image = pygame.image.load('./stim_pic/press.png')   

51.         self.surf = pygame.transform.scale(self.image, (299, 604)).convert

()   

52.    

53.     def draw(self):   

54.         self.screen.blit(self.surf, self.rect)   

55.    

56.  



 98 

57. class Press(pygame.sprite.Sprite):   

58.     def press(self, pressed_keys):   

59.         if pressed_keys[K_SPACE]:   

60.             ifpress = 1   

61.             timestamp = time.time()   

62.             print("in def:", timestamp)   

63.         else:   

64.             ifpress = 0   

65.    

66.         return ifpress   

67.    

68. def update_stim():   

69.     pygame.display.update(rect_)   

70.     pygame.time.delay(delay_time)   

71.    

72.    

73. def rand_position9(num_epoch, m=0, n=1923):  # random 9   

74.     epoch_ori = np.eye(9, dtype=np.int)   

75.     pst = np.empty((num_epoch*9, 9))   

76.     for i in range(num_epoch):   

77.         pst[9*i:9*(i+1)] = shuffle(epoch_ori, random_state=random.randint(

m, n))   

78.     return np.array(pst, dtype=int)   

79.    

80. def rand_position5(num_epoch, m=0, n=1923):  # random 9   

81.     id2 = np.hstack((np.array([0, 1]), np.zeros(7, )))   

82.     id4 = np.hstack((np.array([0, 0, 0, 1]), np.zeros(5, )))   

83.     id5 = np.hstack((np.array([0, 0, 0, 0, 1]), np.zeros(4, )))   

84.     id6 = np.hstack((np.zeros(5, ), np.array([1, 0, 0, 0])))   

85.     id8 = np.hstack((np.zeros(7, ), np.array([1, 0])))   

86.     epoch_ori = np.vstack((id2, id4, id5, id6, id8))   

87.    

88.     pst = np.empty((num_epoch*9, 9))   

89.     for i in range(num_epoch):   

90.         pst[5*i:5*(i+1)] = shuffle(epoch_ori, random_state=random.randint(

m, n))   

91.    

92.     return np.array(pst, dtype=int)   

93.    
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94. info = StreamInfo('Markers', 'Markers', 2, 256, 'float32', 'myuidw43536')  

95. outlet = StreamOutlet(info)   

96. SCREEN_WIDTH = 900   

97. SCREEN_HEIGHT = 600   

98. single = 600 / 3 - 1   

99.    

100. screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))   

101. pygame.display.set_caption('P300 Stimulator')   

102.    

103. rect = [0] * 10   

104. rect_wh = [   

105.     (1, 1), (single + 3, 1), (single * 2 + 5, 1),   

106.     (1, single + 3), (single + 3, single + 3), (single * 2 + 5, single + 

3),   

107.     (1, single * 2 + 5), (single + 3, single * 2 + 5), (single * 2 + 5, s

ingle * 2 + 5),   

108.     (single * 3 + 7, 1)   

109. ]   

110.    

111. for i in range(len(rect)-1):   

112.     rect[i] = pygame.Rect(*rect_wh[i], single, single)  # (初始坐标，长，

宽)   

113.     rect[i] = Stim(rect[i], screen, 0)   

114.    

115. rect[9] = pygame.Rect(*rect_wh[9], single + 100, single * 3 + 7)   

116. rect[9] = Button(rect[9], screen, -1)   

117.    

118. rect_ = rect[:9].copy()   

119.    

120. press = Press()   

121.    

122. FLIP = pygame.USEREVENT + 1   

123. pygame.time.set_timer(FLIP, epoch_time)   

124.    

125. position = rand_position5(10000)   

126. epoch = 0   

127.    

128. bg = pygame.image.load('./stim_pic/bg.png')   

129. bg = pygame.transform.scale(bg, (603, 603)).convert()   
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130.    

131. running = True   

132. while running:   

133.     for event in pygame.event.get():   

134.         label = 0   

135.         pressed_time = 0   

136.         if event.type == QUIT:   

137.             running = False   

138.    

139.         elif event.type == FLIP:   

140.             for i, element in enumerate(rect_):   

141.                 element.stats = position[epoch][i]   

142.                 marker = int(np.unique(position[epoch], return_index=True

)[1][1])   

143.                 element.draw()   

144.                 label = marker + 1   

145.             update_stim()   

146.    

147.         rect[9].draw()   

148.         pressed_keys = pygame.key.get_pressed()   

149.         ifpress = press.press(pressed_keys)   

150.    

151.         timestamp = time.time()   

152.         outlet.push_sample([label, ifpress], timestamp)   

153.    

154.         # screen.fill((0, 0, 0))   

155.         screen.blit(bg, (0, 0))   

156.         # pygame.display.update(rect_)   

157.         pygame.display.flip()   

158.         clock.tick(60)   

159.         pressed_time = 0   

160.         epoch += 1  
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Classifier 

1. import numpy as np   

2. from pylsl import StreamInlet, resolve_byprop   

3. import utils   

4. import time   

5. import pandas as pd   

6. import pickle   

7.    

8.    

9. BUFFER_LENGTH = 7.5   

10. fs = 256   

11. timestamp_marker_buffer = []   

12. epoch = 0   

13. epoch_0 = 0   

14.    

15. # classifier   

16. pkl_filename = "clf_4sum-SVM-RKF30.pkl"   

17. with open(pkl_filename, 'rb') as file:   

18.     clf = pickle.load(file)   

19.    

20.    

21. if __name__ == "__main__":   

22.    

23.     # eeg stream   

24.     streams = resolve_byprop('type', 'EEG', timeout=1)   

25.     inlet = StreamInlet(streams[0], max_chunklen=12)   

26.    

27.     # marker stream   

28.     marker_streams = resolve_byprop('name', 'Markers', timeout=1)   

29.     marker_inlet = StreamInlet(marker_streams[0])   

30.    

31.     eeg_buffer = np.zeros((int(fs * BUFFER_LENGTH * 2), 5))   

32.     timestamp_buffer = np.zeros((int(fs * BUFFER_LENGTH * 2),))   

33.    

34.     marker_buffer = np.zeros((1, 2))   

35.     timestamp_marker_buffer = np.zeros((1, ))   

36.    
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37.     start_time = time.time()   

38.    

39.     try:   

40.         while True:   

41.             time_correction01 = inlet.time_correction()   

42.             time_correction02 = marker_inlet.time_correction()   

43.    

44.             data_eeg, timestamp_01 = inlet.pull_chunk(timeout=1, max_sampl

es=int(fs))   

45.             tc_1 = np.array(timestamp_01) + time_correction01   

46.    

47.             eeg_buffer = np.vstack((eeg_buffer, np.array(data_eeg)))[-

len(eeg_buffer):]  # (2816,)   

48.             timestamp_buffer = np.hstack((timestamp_buffer, tc_1))[-

len(timestamp_buffer):]   

49.    

50.             data_marker, timestamp_02 = marker_inlet.pull_chunk(timeout=0,

 max_samples=int(fs))  # timeout=0 !!!!!!   

51.    

52.             if epoch > 0:   

53.                 tc_2 = np.array(timestamp_02) + time_correction02   

54.                 marker_buffer = np.vstack((marker_buffer, np.array(data_ma

rker)))   

55.                 timestamp_marker_buffer = np.hstack((timestamp_marker_buff

er, tc_2))   

56.    

57.                 if timestamp_buffer[-

1] >= (start_time+epoch_0*BUFFER_LENGTH):   

58.                     epoch_0 += 1   

59.                     print("\n----------------epoch----------------

", epoch_0)   

60.    

61.                     timestamp_marker_buffer = np.reshape(timestamp_marker_

buffer[1:], (-1, 1))   

62.    

63.                     marker_buffer = marker_buffer[1:]   

64.                     press_buffer = utils.change2one(marker_buffer[:, 1])   

65.                     marker_buffer[:, 1] = press_buffer   
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66.                     marker_all = np.hstack((marker_buffer, timestamp_marke

r_buffer))   

67.                     marker_all = utils.delete00(marker_all)   

68.                     data = pd.DataFrame(data=eeg_buffer, columns=["TP9", "

AF7", "AF8", "TP10", "AUX"])   

69.    

70.                     for ii in range(2):   

71.                         data['Marker%d' % ii] = 0   

72.    

73.                     for marker in marker_all:   

74.                         ix = np.argmin(np.abs(marker[2] - timestamp_buffer

))   

75.                         for ii in range(2):   

76.                             data.loc[ix, "Marker%d" % ii] = marker[ii]   

77.    

78.                     data = np.array(data)   

79.                     if np.sum(press_buffer) > 0:   

80.                         label, idx_label = utils.findMarker(data)   

81.    

82.                         if len(idx_label) >= 4:   

83.                             tp9 = data.T[0]   

84.                             tp10 = data.T[3]   

85.                             tp9_10 = np.sum([tp9, tp10], axis=0)   

86.                             data_filtered = utils.butter_bandpass_filter(t

p9_10, 1, 30, 256)   

87.                             data_0 = np.hstack((data_filtered, np.zeros((2

56, ))))   

88.                             data_1 = np.empty((len(idx_label), 256))   

89.    

90.                             for i in range(len(idx_label)):   

91.                                 data_1[i] = data_0[idx_label[i]:idx_label[

i]+256]   

92.                             data_2 = np.sum(data_1, axis=0)   

93.                             pred = clf.predict(np.reshape(data_2, (1, -

1)))   

94.    

95.                             if pred == 1:   

96.                                 print("success!")   

97.                                 with open("commend.pkl", "wb") as f:   
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98.                                     pickle.dump([epoch, label], f, protoco

l=2)   

99.                                     f.close   

100.                             else:   

101.                                 print("failed..")   

102.    

103.                             # print("press label:", label, "   press time

s:", len(idx_label))   

104.                             print("recognized label:", label)   

105.    

106.                     marker_buffer = np.zeros((1, 2))   

107.                     timestamp_marker_buffer = np.zeros((1, ))   

108.    

109.             epoch += 1   

110.    

111.     except KeyboardInterrupt: 

 


