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Abstract

Tensor, also called multiway array, is a generalization of vector, matrix
to the higher-dimensional cases. In many real-world applications, the data
recorded from multiple conditions and multidimensional structured data is
frequently occurred, which is very suitable to be represented efficiently by
using tensors instead of matrices. To process such multi-dimensional data,
tensor decomposition/factorization and multilinear algebra is the fundamen-
tal tools, which is still under development. Tensor factorization can capture
the multilinear latent factors effectively and take the structure information
into account explicitly. The theory and algorithms of tensor factorization
have been widely studied during the past decade, and demonstrated to be
successful for feature extraction, dictionary learning, dimension reduction,
efficient algorithm, compressive representation and large scale data analy-
sis. Hence, it has been applied to many real-world applications, such as
image/video recognition/classification, social network analysis, image com-
pletion, speech processing, natural language processing and brain signal pro-
cessing.

In this study, we focus on the probability formulate of tensor factorization
and Bayesian inference for learning algorithm. The Bayesian tensor factor-
ization has several advantages. The first one is that the rank of tensor can
be inferred automatically from the given data, which thus avoids the time-
consuming procedure of tuning parameter. Secondly, the uncertainty infor-
mation of latent factors is considered in our model and thus is more robust
to prevent the overfitting problem. To handling the missing value problem,
the Bayesian tensor factorization methods are extended to incomplete tensor
data and the corresponding algorithms are developed.

Based on these Bayesian tensor factorization methods, we study how it

can be applied to solve several real-world problems which mainly focuses
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on the denoising and completion of image, video and MRI data. We inves-
tigate the non-local tensor denoising framework for multi-dimensional data
by using 3D tensor patches instead of 2D patches, which is more useful for
image/video and MRI data denoising. By using Bayesian tensor factoriza-
tion for low-rank approximation of similar patches, our method enables us to
preserve the spatial and time structure and also automatically find the noise
variance parameter, which is thus more practical as compared to the tradi-
tional denoising methods. Furthermore, we introduce the Bayesian Tucker
decomposition method, which is able to predict the missing values by using
partially observed tensor data. Our method can effectively find the optimal
multilinear ranks given a specific missing ratio. The experimental results on
image/video denoising and image/video/MRI completion demonstrate the
effectiveness of our methods in terms of flexibility and performance, as com-
pared to other tensor-based denoising, and tensor-based completion meth-
ods.

The organization of my thesis is as follows: Chapter 1 introduces the basic
notations and operations of tensor and multilinear algebra. The most popu-
lar tensor factorization models are also presented; Chapter 2 presents a tensor
denoising framework by using Bayesian CP factorization method. The for-
mulation of Bayesian CP factorization together with the detailed algorithm
are described. The experiments on image/video and MRI denoising are per-
formed with comparisons with other related methods; Chapter 3 presents a
tensor completion framework by using Bayesian Tucker model. The forumu-
lation of Bayesian Tucker decompositon togher with the detailed algorithm
are described. The experiments on image/video and MRI completion, i. e.,
prediction of missing values by using only a small portion of data, are per-
formed and compared with other related methods; Chapter 4 summarizes
the previous studies and presents some future trends and directions of ten-

sor related methods in machine learning.
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Chapter 1

Multilinear Algebra and Tensor

Decomposition

1.1 Background

Tensor is a multidimensional array which is a generalization of vectors and
matrices to higher dimensions. First-order tensor is a vector, second-order
tensor is a matrix, and third and higher order tensor are called a tensor. The
tensors of first, second, third-order are shown in Fig. 1.1.

Tensor decompositions originated from Hitchcock (Hitchcock, 1927)(Hitch-
cock, 1928). Under the work of Tucker (Tucker, 1963b) (Tucker, 1964) (Tucker,
1966), Carroll and Chang (Carroll and Chang, 1970), Harshman (Harshman,
1970), Appellof and Davidson (Appellof and Davidson, 1981), the tensor the-
ory and tensor decompositions (factorizations) algorithms have been suc-
cessfully applied to various fields, the examples include signal processing,

computer vision and etc.

1.2 Notations

Tensor is a multidimensional array, the order of a tensor is the number of
dimensions (Kolda and Bader, 2009). Tensor of order one (vector) is denoted

by boldface lowercase letters, e.g., a, the i-th element of a one-order tensor
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FIGURE 1.1: First, second, thrid-order tensor

is denoted by a;. Tensor of order two (matrix) is denoted by boldface capital
letters, e.g., A, the (i, j) element of a two-order tensor is denoted by a;j. Tensor
of order three or higher (higher-order tensor) is denoted by boldface Euler
script letters, e.g., X, the (i, j, k) element of a three-order tensor is denoted by

xijk- Indices typically range from 1 to their capital version, e.g., i =1, ..., I.

1.3 Multilinear Algebra

The Frobeniusnorm of a tensor X € RI1*2*--xIN g the square root of the

sum of the square of all elements (1.1)

L D

1Xr =, ), 2 2 P iy (1.1)

i1=1i= in=1

The inner product of two same sized tensors X, Y € RI1*2X*IN jg de-

fined by

L D In
=) Z Y XiyigeinYigigein - (1.2)
11 112 IN:1

It follows immediately that (X, X) = ||X||3.
The Hadamard product is an elementwise product between two tensors
that must be same sizes. Given A € R!*J and B € R/, the Hadamard

product is denoted by A ® B € R!*/, which is computed by
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a11byr apbin -+ aygbygy
a1 by axpby -+ ayby;

A®B = | aybs anbsp -+ azbis | - (1.3)
| anbn apbp -+ agbyy

The Hadamard product of N > 3 items is defined as
®nN:1 A(”) — A(l) ® A(z) ®---® A(N). (1.4)

The Kronecker product of matrices A € R/ and B € RX*! becomes a

matrix of size IK x JL, denoted by A ® B and computed by

{leB 6112B Ell]B
El21B ElzzB Elz}B

ARB = a31B a32B Ce a3]B . (15)

LZHB Elsz Ll[]B ]

The Khatri — Rao product of matrices A € R™*K and B € R/*K is a matrix
of size I] x K, denoted by A ® B. In particular, the Khatri-Rao product of

N > 3 matrices in a reverse order is defined by

N

n=1

The Khatri-Rao product of a group of matrices, except the nth matrix is de-

noted by A(\") and computed by
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k=1k#n (1.7)

1.4 CP Decomposition

CANDECOMP /PARAFAC (CP) decomposition method is proposed by Car-
roll and Chang (Carroll and Chang, 1970) and PARAFAC (parallel factors)
proposed by Harshman (Harshman, 1970). Usually, we refer to the CAN-
DECOMP /PARAFAC decomposition as CP (Kiers, 2000). CP decomposition
is to represent a tensor as a sum of rank-one tensors. For instance, given a
third-order tensor X € R!*/*K, we wish to represent it by
R
X =) aob,oc, =[AB,C]. (1.8)
r=1

The element-wise form of (1.8) is written as

R
Xije = Y QirbjrChy,
r=1 (1.9)

Vi=1,.,LVj=1.,]vk=1,.K

where a, € RI, b, € R/ and ¢, € RX, Vr = 1,...,R. The rank of a tensor X,
denoted R = rank(X), is define as the smallest number of rank-one tensors
that can exactly represent X'. The scheme of CP decompositions is illustrated

in Fig. 1.2.

1.5 Tucker Decomposition

The Tucker decomposition was proposed in 1963 (Tucker, 1963a), and refined

in subsequent articles by Levin (Appellof and Davidson, 1981) and Tucker
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: / b1 / b2 / br
X a1 az ar

FIGURE 1.2: CP decomposition of a third-order tensor

(Tucker, 1964; Tucker, 1966). Tucker decomposition can be considered as an
extension of PCA (Principal Components Analysis) to a high order tensor,
which decomposes a tensor into a core tensor multiplied (or transformed)
by several matrices along each mode. For instance, given a three-way tensor

X € R™J*K Tucker decomposition is written as

X =G x1Ax,Bx3C

p
= Z Z ZSpqroapOb o ¢y (1.10)
p: : :

= [G; A, B, C].

The element in tensor can thus be computed and represented by

P Q R
Xijk = ) D ) SparfipbjgChr,

p=lg=1r=1 (1.11)
vVi=1,.,LVj=1,.,],lVk=1,.., K

Here, A €¢ RI*P, B € R/*C and C € RX*R are the factor matrices (which are
usually orthogonal) and can be considered as the principal components in
each mode. Tensor G € RP*Q* R ig called the core tensor and its entries show
the level of interaction between the different components. The last equality in
(1.10) using the shorthand [G; A, B, C] was introduced in (Kolda and Bader,

2009). The scheme of Tucker decompositions is illustrated in Fig. 1.3.
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FIGURE 1.3: Tucker decomposition of a third-order tensor



Chapter 2

Non-Local Tensor Denoising Using
Bayesian Low-rank Tensor
Factorization on High-order

Patches

Removing the noise from an image is vitally important in many real-world
computer vision applications. One of the most effective method is block
matching collaborative filtering, which employs low-rank approximation to
the group of similar patches gathered by searching from the noisy image.
However, the main drawback of this method is that the standard deviation
of noises within the image is assumed to be known in advance, which is im-
possible for many real applications. In this chapter, we propose a non-local
filtering method by using the low-rank tensor decomposition method. For
tensor decomposition, we choose CP model as the underlying low-rank ap-
proximation. Since we assume the noise variance is unknown and need to
be learned from data itself, we employ the Bayesian CP factorization that can
learn CP-rank as well as noise variance solely from the observed noisy ten-
sor data, The experimental results on image and MRI denoising demonstrate

the superiorities of our method in terms of flexibility and performance, as
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compared to other tensor-based denoising methods.

2.1 Background

Image denoising is an important task in image processing field, many tech-
niques try to solve this problem. Recently, non-local filtering techniques have
attracted a lot of interest and demonstrated the superiority in terms of per-
formance (Buades, Coll, and Morel, 2005; Wang and Zhang, 1999; Dabov et
al., 2007; Rajwade, Rangarajan, and Banerjee, 2011). The key technique in im-
age denoising is to infer the optimal bases from a group of similar patches.
More specifically, for any reference patch, the bases can be learned from a set
of patches selected within a specific distant range, which are similar to that
patch. These image denoising methods have been also extended to video
denoising, which enables the patches from adjacent video frames to be con-
sidered in gathering the similar patches. However, the existing methods are
all based on 2D patches, thus is not effective for multiway data that is natu-
rally represented as a tensor.

Multidimensional data is natural represent by tensor, compared to ma-
trix tensor factorization can capture the multilinear latent factors effectively
and take the structure information into account explicitly. The theory and
algorithms of tensor factorization have been widely studied during the past
decade and were successfully applied to many real-world applications, such
as image completion (Gui, Zhao, and Cao, 2017; Yuan, Zhao, and Cao, 2017b;
Liu et al., 2013; Yuan, Zhao, and Cao, 2017a; Yuan et al., 2018b; Zhao, Zhang,
and Cichocki, 2015; Filipovi¢ and Juki¢, 2015; Yuan et al., 2018¢; Yuan et al,,
2018a), signal processing (De Lathauwer and Castaing, 2008; Gui, Zhao, and
Cao, 2016; Cichocki et al., 2015; Gui et al., 2017; Muti and Bourennane, 2005;
De Lathauwer and De Moor, 1998), brain machine interface (BMI) (Liu et
al., 2014; Mocks, 1988; Zhang et al., 2016), image classification (Shashua and
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Levin, 2001), face recognition (Geng et al., 2011), machine learning (Zhao et
al., 2016), etc.

The higher order singular value decomposition (HOSVD) is an extension
of the matrix SVD technique to the multiway tensor (De Lathauwer, De Moor,
and Vandewalle, 2000). Recently, the HOSVD has been successfully applied
to image and video denoising (Rajwade, Rangarajan, and Banerjee, 2011) (Ra-
jwade, Rangarajan, and Banerjee, 2013) (Zhang et al., 2015) as a multilinear
transform basis. However, the limitations of HOSVD-based denoising are
that the noise standard deviation must be known in advance, which results
in difficulties in practical applications.

To solve this problem, we leverage the Bayesian approach to learn the
noise variance from original data without using priori knowledge. In con-
trast to HOSVD model which is a Tucker tensor decomposition model, we
apply the CP decomposition which has a more compact representation abil-
ity than Tucker decomposition. Since the computation of CP Rank of a ten-
sor is proven to be a NP hard problem, we specify the sparsity priors over
the latent components, which can thus obtain the minimum number of com-
ponents via Bayesian inference. Similarly, we also place a non-informative
hyper-prior over the noise precision parameter which leads to the possibility

of inferring it from data.

2.2 Non-Local Tensor Denoising

We consider a given tensor T corrupted by Gaussion noise N (0, ), our ob-
jective is to recover the underlying clean tensor V. The main procedure in-

cludes three steps that are

* At each tensor element and for a fixed sub-tensor size, a group of simi-

lar sub-tensors is selected and constructed to be a higher order tensor.
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* The proposed Bayesian CP factorization is employed for each stack to

obtain an estimate of a denoised stack.

* The sub-tensors are reassembled in original location to obtain a de-

noised tensor.

Given a reference sub-tensor P from the noisy tensor 7, we choose other
sub-tensors in the tensor 7 that are similar to P. The similarity can be simply
measured by Euclidean distance. There are two choices for selecting similar
sub-tensors. One is to use a distance threshold 7; = 30?s, where ¢? denotes
the noise variance and s denotes the size of each sub-tensor. The other one
is to use a fixed number of sub-tensors ordered by the distance with the ref-
erence sub-tensor. Assume that there are K such sub-tensors (including P)
which are labeled as {P;} where 1 < i < K. These sub-tensors were assumed
to be noise corrupted versions of P. If a set of sub-tensors are similar to each
another, denoising can be performed by leveraging this fact and filter them
jointly. Based on this, we group together similar sub-tensors and organize
them as a higher order tensor Y = {P;|i = 1,...,K}.

Now we consider how the filtering of Y can be performed. The concept
of jointly filtering multiple patches has been implemented in the BM3D al-
gorithm but with fixed bases. However, we extend this concept to learn
the spatially adaptive bases. By assuming that the group of similar sub-
tensors were generated from a same clean sub-tensor, we can easily identify
the low-rank properties of ). Therefore, the low-rank tensor factorization
can be employed to learn the bases independently for each group of simi-
lar sub-tensors. One straightforward way is to apply HOSVD to solve this
problem. However, the truncated HOSVD method requires that the param-
eter for thresholding the transform coefficients must be known in advance,

which results in difficulties in the practical applications. Hence, in this paper,
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we propose a Bayesian tensor factorization based on CP model and the low-
rank assumption. In addition, we assume that noise variance is unknown
and must be learned from noisy data automatically. After leaning the latent
multiliear factor matrices from Bayesian CP factorization, we can reconstruct
the group of similar sub-tensors as the denoised results for . Then, all the
sub-tensors in Y are jointly denoised. This procedure will be repeated for
each reference sub-tensor P, in a sliding window fashion and the denoised

sub-tensors are averaged to obtain the denoised result for tensor 7T .

2.3 Bayesian Low-Rank Tensor Factorization

2.3.1 Model Specification

We introduce the Bayesian CP factorization for jointly filtering of multiple
sub-tensors in ). Without loss of generality, let ) be an Nth-order tensor of
size I} X Ip x - -- X Iy. We assume ) is a noisy observation of true tensor &,
thatis, Y = X + £, where the noise term is assumed to be an i.i.d. Gaussian

distribution, i.e, € ~ [1;, ;N (0,771), and the latent tensor X is generated

by a CP model, defined by
X a N
x=Yao...0a™ =AM, AN, 2.1)
r=1

where o denotes the outer product of vectors and [- - - ] is a shorthand nota-
tion, also termed as the Kruskal operator. CP factorization can be interpreted
as a sum of R rank-one tensors, and the smallest integer R is defined as CP
rank. {A(”)}nN:1 denote a group of factor matrices. For clarity, we denote

mode-n factor matrix A" € R*R by row-wise or column-wise vectors (2.2)
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4 i?’l

(n) (n)

:[a.(ln),...,a.r aR] 2.2)

The likelihood of CP model can be factorized over tensor elements, which

is given by (2.3)

Visip.in ’ {A(")},T ~N <<a§11),a(2), ‘e ,a(N)> , T_l) . (2.3)

2 IN

@ ... o

M,
IN

where T is the noise precision, and <.a1i1 ;A > is a generalized
inner-product among N vectors. The observation model in (2.3) shows that
Vi,...iy i represented by a group of R-dimensional latent vectors {af:) n =
1,...,N }, which results in that the multilinear interactions can be consid-
ered. As compared to matrix factorization, tensor factorization allows us to
model the multilinear structure by the inner product of N > 3 vectors.

The number of latent components, i.e., Rankcp(X) = R, is a tuning pa-
rameter whose selection is very difficult in practical applications. To avoid
manually adjusting this parameter, we aim to develop an automatic model
selection, which can find the rank of the latent tensor X solely from the ob-
served data ). Taking into account the low-rank property, the number of
latent components is desired to be minimal. Therefore, we employ specific
sparsity-inducing priors over latent components and control the variance of
each component by individual hyperparameters. Through Bayesian infer-
ence, the variance of unnecessary components can be reduced to zero. This
strategy is related to automatic relevance determination (ARD) or sparse
Bayesian learning. The difference lie in that our method employs a group
of sparsity-inducing priors over each mode-n factors and the hyperparame-

ters are common among these priors. Hence, the low-rank constraint can be

imposed jointly to the factor matrices.
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For each mode-n factor matrix, we specify a prior distribution that is gov-
erned by hyperparameters A = [A4, ..., Ag], among which A, corresponds to
rth component. The prior distribution over latent factors is thus given by

ag) A~ N (al(:) |0, A_1> ,

(2.4)
Vn € [1,N], Vi, € [1, L,].

where A = diag(A) is a diagonal matrix that is also called the precision ma-
trix. This precision matrix is jointly shared by all latent factor matrices. Since
the precision parameters A is unknown, and need to be learned automati-

cally, we employ the hyperprior over A, given by

A ~ Ga(A,|ch,dl), Vre[1L,R]. (2.5)

where the Gamma distribution is given by Ga(x|a, b) = % L

ber of components (i.e., R) is usually initialized to be a maximum possible
value. By employing a Bayesian inference framework, the effective number
of components can be inferred automatically solely from observed data. Be-
cause the hyperparameters of sparsity priors over all factor matrices are com-
mon, the same number of components can be obtained for each factor matrix,
resulting in that the minimum number of rank-one terms can be learned.
Hence, the CP rank of the tensor can be effectively inferred while performing
low-rank tensor factorization.

Since the noise variance is assumed to be unknown, we can also specify a

hyperprior over the noise parameter 7, which is given by (2.6)
T ~ Ga(T|ag, bo). (2.6)

To simplify the notations, we collect and denote all unknown variables
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by © = {A(l), AN A T}. Finally, the joint distribution of Bayesian low-

rank tensor factorization model can be written as (2.7)

p(¥,0) =0 (Y| (A"} 7)

(2.7)
1j1p (A" [Ap()p(r)) -

Generally, maximum a posteriori (MAP) estimation of ® can be obtained
by optimizing. In contrast to the MAP estimation, we aim to develop a
Bayesian inference method to infer the full posterior distribution of unknown

variables in ©®, which is computed by (2.8)

p(®]Y) = (2.8)

I'p
2.3.2 Bayesian Model Inference

Since the exact Bayesian inference in is obviously analytically intractable, we
must resort to the approximate inference framework. In this section, we em-
ploy the variational Bayesian (VB) inference strategy to perform model infer-
ence for tensor factorization model.

We assume that q(®) is an approximation of the true posterior distribu-
tion p(®|Y), which is optimized by KL divergence between them, which can

be shown to be

KL(q(0 Hp®|y) { o)
oo a5

where In p(Y) denotes the marginal likelihood, and £L(g) = [ ¢(®) In { PY.0)

} 2.9)

9(©)

}do



2.3. Bayesian Low-Rank Tensor Factorization 15

can be defined as its lower bound. Therefore, instead of minimizing the KL di-
vergence directly, we can maximize the lower bound alternatively due to the
fact that the model evidence is a constant and not related to any unknown
variables.

By employing the mean-field approximation, we assume that the varia-

tional distribution can be factorized as (2.10)

N
() = n(W)g<(r) [T . (4). (2.10)

Therefore, it can been shown that the posterior distribution of factor ma-
trices is also a Gaussian distribution and the distributions corresponding to

each row are independent, which is written as

I
%(A(”)) _ HN‘ <a(”)

: in
=1

a"v, wn e [1,N]) . 2.11)

where the variational parameters are computed by

A = By [1]Y(n E, [AN] VI,

» (2.12)
V) = (B, 1], [AOTAN] 4 E,[A])
where Y (,,) denotes the mode-n matricization of Y and
AGn) — @A(k)’ (2.13)

k#n

where the size of Oy, AR is [Titn Ik X R. Thus, |, [AODTAN)] denotes the

expectation of covariance matrix, while the covariance matrix corresponds to

the Khatri-Rao product of all factor matrices except the nth-mode.
Therefore, the parameters of posterior distribution over factor matrices

can be approximated by, which can be also used to compute the posterior

moments, such as Vn, Viy, E, [A(”)] ,and E, [A(”)A(")T] ,E, [A(”)TA(”)] .
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For the inference of A, we can derive that the posterior distribution over
Ay, ¥r € [1, R] can be obtained by
R
ar(A) = [T Ga(As|chy, di), (2.14)
r=1

where the variational parameters are computed by

1 N
=1 (2.15)
o 1Y ()T _(n)
dy = dy+ 5 Y E, [a.r a., ]
n=1

The expectation term in above equations denotes the norm of the rth com-

ponent from mode-n matrix, which can be easily computed by

E, [a.(:l)Ta.(:l)} —amTm 4, (V<”>) . (2.16)

rr

For inference of hyperparameter 7, it can be derived that the variational

posterior is a Gamma distribution, given by

q:(7) = Ga(t|am, bm), (2.17)

the variational parameters of the posterior distribution are computed by

aM:aO—i_%HI?Z/

n 2.18

_ 1 (1) ™7 |2 (219
b = bo + 5 Eg Hy—[[A A ]]HF

2.3.3 Initialization of Model Parameters

In this probabilistic tensor decomposition model, it is important to initial-

ize the hyperparameters. Specifically, co, do, ag, by are set to 10~° yielding a

noninformative prior. The mode-n factor matrices {A (") N | can be either
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randomly drawn from N(0,1) or initialized by SVD method, i.e., Al =
1
UMEM? where U™ is the singular vectors and (" is the singular values

matrix.

2.4 Experimental Results

2.4.1 Image Denoising

We use color image (Lena, Peppers, Barbara) denoising to evaluate our method
BCPF. For the noise model N (0, ), we select ¢ € {0.4,0.8,1.2}. In the ex-
periment, we use images of size 256 x 256 x 3 consisting of R, G, B chan-
nels. The method performance is evaluated by PSNR which is defined by
101og,,(Max?/MSE) (Max; is maximum possible pixel value of the image,
and MSE denotes the mean squared errors).

The result are shown in Table 2.1 and the noisy and denoised images are
shown in Fig. 2.1. The size of sub-tensors is selected to be 4 x 4 x 3 and the
maximum number of similar sub-tensors is set to 30. We observe that our
method can obtain high quality of denoised images when noise level is low,
especially, it can obtain a relatively good quality even when the noise level is

extremely high.

2.4.2 MRI Denoising

Magnetic resonance imaging (MRI) is a medical imaging which is widely
employed in the clinical diagnosis. Because of the movements of the subject
or electronic interference, MRI data always contain noise, the denoising of
MRI data is thus important for the diagnosis quality. In this experiment, we
use the public MRI data (http:/ /brainweb.bic.mni.mcgill.ca/brainweb /), the

size of MRI data is 181 x 217 x 165, and we use the sub-tensor sizein 4 x 4 x 4
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TABLE 2.1: The denoising performances evaluated by PSNR
for Lena, Peppers, Barbara images under three different noise

levels.
Lena Noise standard deviation
Methods 0.4 0.8 1.2

BCPF 3290 32.39 31.72
HOSVD 30.70 30.54 30.46

Peppers Noise standard deviation
Methods 0.4 0.8 1.2
BCPF  31.37 30.89 30.77
HOSVD 30.73 30.49 29.84

Barbara Noise standard deviation

Methods 0.4 0.8 1.2
BCPF  30.32 30.89 30.78
HOSVD 30.55 30.54 30.36

and the maximum number of similar sub-tensors is set to 30. The result are

shown in Table 2.2 and the noisy and denoised images are shown in Fig. 2.2.

TABLE 2.2: The denoising performances evaluated by PSNR
for MRI denoising under three different noise levels (0.05, 0.1,
0.15).

Noise standard deviation

Methods 0.05 0.10 0.15

BCPF 3597 33.81 33.00
HOSVD 36.64 33.71 32.86

2.5 Summary

In this Chapter, we propose a Bayesian tensor factorization based denoising

framework and apply it to image and MRI denoising tasks. In contrast to
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Lena Peppers Barbara

/4
Original |
Noisy

Denoised

FIGURE 2.1: Visualization of Image data. From top to bottom
rows, the original, noisy and denoised images are shown under
the condition of o = 0.4.

MR = 50%, PSNR= 26dB MR = 50%, PSNR= 26dB

Noisy
Noisy

Missing
Missing

Estimation
Estimation

FIGURE 2.2: Visualization of MRI denoising results. From top
to bottom rows, the original, noisy and denoised slice of MRI
data are shown under the condition of o = {0.05,0.1,0.15}.

most existing denoising methods, we use sub-tensors instead of 2D patches.
Moreover, the transform bases of a group of sub-tensors can be learned by the
probabilistic CP factorization with a low-rank assumption. As compared to
other methods, our method enables us to infer automatically the noise vari-
ance, which indicates that our method is more practical. Experimental results

show that our method can outperform HOSVD based denoising method.
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Chapter 3

Image and Video Completion by

Bayesian Tensor Decomposition

Reconstruction of image and video from sparse observations attract a great
deal of interest in the filed of image/video compression, feature extraction
and denoising. Since the color image and video data can be naturally ex-
pressed as a tensor structure, many methods based on tensor algebra have
been studied together with promising predictive performance. However,
one challenging problem in those methods is tuning parameters empirically
which usually requires computational demanding cross validation or intu-
itive selection. In this Chapter, we introduce Bayesian Tucker decomposition
to reconstruct image and video data from incomplete observation. By speci-
tying the sparsity priors over factor matrices and core tensor, the tensor rank
can be automatically inferred via variational bayesian, which greatly reduce
the computational cost for model selection. We conduct several experiments
on image and video data, which shows that our method outperforms the

other tensor methods in terms of completion performance.
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3.1 Background

Image or video completion, which is to reconstruct a full image/video from
only sparsely observed information, plays an important role in image pro-
cessing field. Image data can be naturally expressed as a 3rd-order tensor of
size height x width x color channel, while the video data can be represented
as 4th-order tensor of size height x width x color x time. The most popu-
lar models of tensor decomposition are Tucker decomposition (Tucker, 1966)
and CANDECOMP /PARAFAC (CP) decomposition (Carroll and Chang, 1970;
Harshman, 1970; Kiers, 2000). Moreover, tensor method has been applied in
various research field such as: image completion (Gui, Zhao, and Cao, 2017;
Yuan, Zhao, and Cao, 2017b; Liu et al., 2013; Yuan, Zhao, and Cao, 2017a;
Yuan etal., 2018b; Zhao, Zhang, and Cichocki, 2015; Filipovi¢ and Juki¢, 2015;
Yuan et al., 2018¢; Yuan et al., 2018a), signal processing (De Lathauwer and
Castaing, 2008; Gui, Zhao, and Cao, 2016; Cichocki et al., 2015; Gui et al.,
2017; Muti and Bourennane, 2005; De Lathauwer and De Moor, 1998), brain
machine interface (BMI) (Liu et al., 2014; Mocks, 1988; Zhang et al., 2016),
image classification (Shashua and Levin, 2001), face recognition (Geng et al.,
2011), machine learning (Zhao et al., 2016), etc. Basically, there are two type
of methods for tensor completion. One type is based on minimization of the
convex relaxation function of tensor rank by using nuclear norm of tensor.
The nuclear norm can be defined in several different ways related to the dif-
ferent tensor decomposition models. By applying the appropriate optimiza-
tion algorithm, we can find the optimal low-rank tensor as the approximation
of full tensor. Another type is based on tensor decomposition of incomplete
tensor. The specific algorithm must be developed to find latent factors under
the specific tensor decomposition model by using partially observed entries.
It is necessary to predefine the tensor rank, which is considered as a model

selection problem. Although cross-validation can be used to determine an
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optimal tensor rank, it is quite computational demanding. Especially, when
the Tucker decomposition is considered, the number of possibilities of tensor
rank increases exponentially to the order of tensor.

To overcome these limitations, we introduce a Bayesian tensor decompo-
sition method to perform image and video completion. Our methods can
automatically adapt model complexity and infer an optimal multilinear rank
by the principle of maximum lower bound of model evidence. Experimen-
tal results and comparisons on image and video data demonstrate remark-
able performance of our models for recovering the groundtruth of multilin-

ear rank and missing pixels.

3.2 Bayesian Tucker Decomposition

3.2.1 Model Specification

In this section, we introduce Bayesian Tucker decomposition for tensor com-
pletion. Let Y be an incomplete tensor with missing entries, and O is a binary
tensor which indicates the observation positions. () denotes a set of N-tuple

indices of observed entries. The value of O is defined by

Opiv =1 if (i1, ...,iN) €Q,

iein

iy =0 if (i1, ..., in) & Q.

(3.1)
0]

Yq is a tensor which only include observed entries. The generative model is

assumed as

where the latent tensor X’ is represented exactly by a Tucker model with a

low multilinear rank and e denotes i.i.d. Gaussian noise.
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Given an incomplete image tensor, Bayesian Tucker model only considers

the observed data, thus the likelihood function can be represented by

P(yﬂ>: I N<yi1i2i3

(il,iz,i3)60

‘X'lllllzl.g,l T_1> * (3.3)

Since the latent tensor X can be decomposed exactly by a Tucker model, we

can thus represent the observation model as that V(iy, ip, i3),

Virinis

(a'} 0.~

N(( ® ui(:)T) vec(G), T_1> (3.4)

Oil ii3

where n = 1,2,3. uf:) is the i,-th row of the factor matrix U™, @ is the
indicator of missing points. T is the precision of Gaussian noise.
To employ sparsity priors, we can specify the hierarchical prior distribu-

tions by

T ~ Ga(ag, b8>,
vee(g) | {A},  ~ N {0, (/5®A<”>)_1),
B ~ Ga(ag, bg), (3.5)

() | 200 N(g, A(n)”), v, Vi

lll-n

Aﬁf) ~ Ga(a{,\, b()\), Vn,Vry,

where f3 is a scale parameter related to the magnitude of G, on which a hy-
perprior can be placed. The hyperprior for A play a key role for different
sparsity inducing priors. We propose the hierarchical prior corresponding to
the Student-t distribution for group sparsity. Note that A = diag(A ).
For Tucker decomposition of an incomplete tensor, the problem is ill-
conditioned and has infinite solutions. The low-rank assumption play an key

role for successful tensor completion, which implies that the determination
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of multilinear rank significantly affects the predictive performance. How-
ever, standard model selection strategies, such as cross-validation, cannot be
applied for finding the optimal multilinear rank because it varies dramati-
cally with missing ratios. Therefore, the inference of multilinear rank is more
challenging when missing values occur.

As shown in (3.5), we employ a hierarchical group sparsity prior over
the factor matrices and core tensor with aim to seek the minimum multilin-
ear rank automatically, which is more efficient and elegant than the standard
model selections by repeating many times and selecting one optimum model.
By combining likelihood model in (3.4), we propose a Bayesian Tucker Com-
pletion (BTC) method, which enables us to infer the minimum multilinear
rank as well as the noise level solely from partially observed data without

requiring the tuning parameters.

3.2.2 Model Inference Algorithm

To learn the BTC model, we employ the VB inference framework under a
fully Bayesian treatment. In this section, we present only the main solutions.
As can be derived, the variational posterior distribution over the core tensor
G is given by

q(G) :N<vec(g) ‘ vec(G), ZG>, (3.6)

where the posterior parameters can be updated by

vec(G) = E[r]sc Y <yi1i2i3él]§[u§:)]). (3.7)
n=1

(il,iz,i3)€Q



Chapter 3. Image and Video Completion by Bayesian Tensor
26
Decomposition

Yo = {]E[ﬁ] ®]E[A(”)} +

E] Y éﬁ[ugmgﬁ]}_l.

(il,iQ,ig)EQ n=1

(3.8)

Since the variational posterior distribution over {U(”) } can be factorized

as

a(U) = TIN (uf” | & ¥"), n=1,....3 (3.9)
the posterior parameters are updated by

a — E[r]wﬁf)m (G )]

In

(3.10)
) (yilizig QE [“f,f )] )
(il,iz,i3)EQ k#n
-1
¥ {]E[A(”)] +1E[T]1E[G(n)<p§:>ggn)” , (3.11)
n k) (k
o= ¥  Qu " (3.12)

(il,...,iN)EQ k#n

The summation is performed over the observed data locations whose mode-n

index is fixed to i,,. In other words, <I>(n)

In

of mode-k (k # n) latent factors that interact with u In (3.11), the complex

in

represents the statistical information

posterior expectation can be computed efficiently by

Vec{ E G, G],] } = E[G(y) ® Gy | vec(@]"). (3.13)
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The variation posterior distribution over {)\(”)} is i.i.d. Gamma distribu-

tions due to the conjugate priors, whichis Vn =1,...,3,

1‘[ Ga(Af) | af), b)), (3.14)

rn=1

where the posterior parameters can be updated by

k#n
) = b+ SE[u)Tul?)] (3.15)
- %IE[,B]]E [vec(g.z..rn...)T] R E[AD]

Finally, the predictive distributions over missing entries, given observed
entries, can be approximated by using variational posterior distributions g(®)

as follows

P (Viriis | V) = /P(yilizig |©)p(©|Yaq) dO

(3.16)
~N <yi1i2i3

:)71'11'21'3/ ]E[T] ! + 0111213>
where the posterior parameters can be obtained by
Viigis = <®]E [ }) [vec(G)],
‘71'211'21'3 =Tr (]E [vec vec(G ] ®1E[ }) (3.17)
[vec(G (@E[ ] [ (n )T}>1E[Vec(g)].

Therefore, our model can provide not only predictions over missing en-
tries, but also the uncertainty of predictions, which is quite important for

some specific applications.
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3.3 Experimental Results

We verified the proposed method experimentally and compared it with re-
lated methods, i.e., high accuracy low rank tensor completion (HaLRTC) (Liu
et al., 2013). Alternating Direction Method of Multipliers (ADMM) (Lin,
Chen, and Ma, 2010) algorithm, developed in the 1970s, was employed by
HaLRTC to solve the nuclear norm optimization problems with multiple
non-smooth terms. HaLRTC algorithm using ADMM framework is based
on simple low rank tensor completion (SiLRTC) algorithm (Liu et al., 2013).
By replacing the dummy matrices M;s by their tensor versions, the algorithm

is shown in Algorithm (1).

Algorithm 1 HaLRTC Algorithm

1: Input: X with Xq =T and K
: Output: X

: SetXqg=Toand X5 =0

: fork =0to K do

fori =1tondo

1
: = fold; |Dua; [ X+ =Y/
e, (5200
7. end for
1 1
Xao=—|LL Mi__yi)
o n( ! 0~ a
Vi=YVi—pM;—2X)

8: end for

G W N

3.3.1 MRI Completion

We evaluate our method by using MRI data !, this dateset contains a set of
realistic MRI data volumes produced by an MRI simulator. Because MRI

data is high-dimensional, the completion from sparse observations becomes

lhttp: / /brainweb.bic.mni.mcgill.ca/brainweb
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TABLE 3.1: The Performance of MRI Completion Evaluated by

PSNR and RRSE
50% 60%
Methods Original Noisy Original Noisy
PSNR RRSE | PSNR RRSE | PSNR RRSE | PSNR RRSE
BTC-T 27.27 0.11 2642 0.12 27.84 0.10 27.12 0.11
HaLRTC | 24.19 0.16 23.17 0.18 26.73 0.12 25.00 0.14
TABLE 3.2: The Performance of MRI Completion Evaluated by
PSNR and RRSE
70% 80%
Methods Original Noisy Original Noisy
PSNR RRSE | PSNR RRSE | PSNR RRSE | PSNR RRSE
BTC-T 28.12 0.10 27.55 0.11 28.38 0.10 27.83 0.10
HaLRTC | 29.57 0.085 | 26.69 0.12 | 32.93 0.057 | 28.22 0.099

very challenging. So we separate the high-dimensional tensor data into low-
dimensional small tensors. Hence, our method can be applied to small ten-
sors completion. In experiment, we use the size of small tensors in 50 x 50 x
50.

We use missing ratio (20% - 50%) and consider the noises in MRI data,
and evaluation the algorithms using Peak Signal to Noise Ratio (PRSN) and
RRSE. The result are shown in Table 3.1 and 3.2, and the visual quality is
shown in Fig. 3.1. As we can see that the proposed method can effectively

recover the missing values with high performance.

3.3.2 Video Completion

The video data is natural representation by a tensor as shown in Fig. 3.2. We
evaluate the performance of the proposed method on a video sequence cor-
rupted by additive Gaussian noise. The video sequence is downloaded from
the benchmark data in (Dabov et al., 2007). We consider the noise standard
deviation of 0.03, 0.15, 0.27 and missing ratio of 20% - 50%. The results are

shown in Table 3.3.
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Missing Noisy Original

Estimation

50 %

20 %

FIGURE 3.1: Visualization of MRI data completion obtained by
BTC

FIGURE 3.2: Tensor representation of a video sequence

TABLE 3.3: The Performance of Video Completion Evaluated

by RRSE
Missing
60% | 50% | 40% | 30% | 20%
Noise | RRSE | RRSE | RRSE | RRSE | RRSE
0.03 | 0.645 | 0.559 | 0.476 | 0.397 | 0.325
0.15 | 0.646 | 0.561 | 0.480 | 0.402 | 0.336
0.27 | 0.650 | 0.564 | 0.483 | 0.408 | 0.344
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3.4 Summary

In this Chapter, we proposed an image completion method based on Bayesian
Tucker decomposition. By using variational bayesian inference, we can avoids
the computational demanding rank selection procedure. We apply the pro-
posed method to image and video with 20-50 % missing voxels, the experi-
mental results demonstrate that our method can effectively recover the whole

data with a high predictive performance.
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Chapter 4

Summary and Prospectives

4.1 Summary

In this thesis, we studied the basic tensor decomposition models, i.e., CPD
and Tucker. The we developed the tensor denoising method, which uses
higher-order tensor patches. To solve the problem of unknown noise vari-
ance, we proposed to apply Bayesian CP factorization for low-rank approx-
imation of similar patches. The formulation and the inference algorithm of
Bayesian CP factorization is presented in details. Another challenging prob-
lem is tensor completion by using fewer observed entries. To solve the rank
selection problem in Tucker decomposition, we employ Bayesian setting of
Tucker decomposition. By using the specially designed sparsity prior on fac-
tor matrices and core tensor, our method is able to learn the Tucker rank
automatically from the given observed data entries.

Based on our proposed methods, we apply them to several real-world
applications, which includes image, video and MRI denoising; image, video
and MRI completion. These two applications are very important to obtain
the high quality data, to predict some missing values. The extensive exper-
imental results show that our method is very effective and perform better

than the other related methods.
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4.2 Prospectives

Tensor decomposition has already been applied for feature extraction, di-
mension reduction, and clustering problems. This thesis mainly focus on the
denoising and completion problems. Besides, tensor decomposition can be
also applied to improve the computation efficiency or achieve high compres-
sion of model parameters. The more applications to machine learning field
seems to be a potential research direction, which is very important to show
the advantages of tensor methods.

On the other hand, tensor network is an emerging topic in recent few
years. It has shown to be very flexible and provide extremely high repre-
sentation ability for very high-order tensor. There are some tensor network
models such as tensor train decomposition and tensor ring decomposition.
However, this field is relatively new and many fundamental problem and
underlying principle is still not clear. We can expect that tensor network will
be a next generation of tensor decomposition methods, which will be an at-

tractive research topic in machine learning field in the future.
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