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論文概要 

  多視点センサとデータ記憶技術の開発に伴い、取得したデータはしばしば⾼次、⼤
規模かつ⾼複雑性の特性を⽰します。これらのデータを如何に効率的に処理するかは
重要な問題です。テンソル（Tensor）は⾏列とベクトルを⼀般化した⾼次的なもので
あり、⾃然にデータの⾼次の関係とオブジェクトを表すことができます。近年、テン
ソル法はデータ処理問題を解決するための強⼒なツールとなっています。ほんの数例
を挙げると、信号処理、機械学習、データマイニング、画像処理、計算神経科学にお
いて、テンソル法で多数の応⽤が開発されています。 
 
  テンソル法の中で、テンソル分解は最も重要で基本的なツールの⼀つです。テンソ
ル分解はテンソルを低次元の潜在的因⼦のセットに分解することです。潜在的な因⼦
は、データの潜在的な特徴を含んでおり、データを強⼒に圧縮する⽅法で表現します。 
CANDECOMP/PARAFAC分解（CPD）とTucker分解（TKD）は、1世紀以上に渡って
研究されてきた最も古典的なテンソル分解モデルです。しかし、これらのテンソル分
解モデルは、⼤規模または⾮常に⾼次のテンソルを扱うときに計算の限界を⽰します。
ごく最近では、テンソルリング分解（tensor ring decomposition, TRD）と呼ばれる最
新のテンソル分解モデルが、その⾼い表現能⼒および多重線形特性のために⼈々の注
⽬を集めています。 TRDの最も重要な利点は、モデルの複雑さがテンソルの次数に
よって指数関数的に増加しないことです。このようにして、TRDは「次元の呪い」を
効果的に克服し、⼤規模で⾼次のテンソルを処理するための強⼒なツールとなりまし
た。 
 
本論⽂は、TRDの理論と応⽤を探ることに焦点を当てます。主な貢献は、⾼効率と

⾼性能の様々な TRD ベースのアルゴリズムを提案することです。第⼀に、画像修復
の問題において、勾配ベースのテンソル補完アルゴリズムを開発しました。既存の⽅
法と⽐較して、我々が提案するアルゴリズムは、⾼次と⾼い⽋測率の画像の修復にお
いて著しく良い性能を⽰しました。第⼆に、TR 因⼦の核規範に基づく２つのランク
ロバスト TRD アルゴリズムを提案しました。これらのアルゴリズムは、テンソルと
TR 因⼦の間のランク関係の理論的証明に基づいており、テンソル補完の課題におけ
るランク選択の負担を著しく軽減することができました。第三に、独創的な TR マッ
クス規範（TR-max-norm）に基づいた効率的な TRDアルゴリズムを提案しました。
この規範はテンソルの TR ランクを正則化できることが、我々の研究で理論的に証明
されました。既存のアルゴリズムと⽐較して、我々が提案したアルゴリズムは⼤規模
なテンソル補完の課題において、安定した収束性と⾼い性能を⽰しました。第四に、
テンソルランダムプロジェクション（tensor random projection）と呼ばれる最新の技
術に基づいて、⾼速 TRD アルゴリズムを提案しました。このアルゴリズムは既存の
ものと⽐較して計算コストを⼤幅に削減し、⼤規模テンソル雑⾳除去に適⽤できます。
この論⽂は TRD の理論研究と応⽤をより充実にし、それによってテンソル⽅法論に
貢献し、研究と産業分野においても良い参考となります。 
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Abstract

Study on High-order Data Completion and Denoising
via Tensor Ring Decomposition Theory

by Longhao YUAN

Doctor of Philosophy

SAITAMA INSTITUTE OF TECHNOLOGY
Graduate School of Engineering

With the development of multi-view sensors and data storage technology, the acquired data
often show the properties of high-order, large-scale and high-complexity. How to efficiently
process these data is a significant problem. Tensor is the generalization of matrix and vector,
which can naturally represent high-order relations and objects of the data. In recent years,
tensor methods have become powerful tools to solve the data processing problem. Numerous
applications of tensor methods have been developed in signal processing, machine learning,
data mining, image processing, computational neuroscience, to name a few.

Among the tensor methods, tensor decomposition is one of the most important and funda-
mental tools, which is to decompose a tensor into a set of latent factors of low dimensionality.
The latent factors are powerful to reveal the latent feature of the data and represent the data
in a highly compressive way. CANDECOMP/PARAFAC decomposition (CPD) and Tucker
decomposition (TKD) are the most classical tensor decomposition models which have been
studied for over a century. However, these models show computational limitations when
dealing with tensors of large-scale or very high-order. In very recent years, a novel tensor
decomposition model termed as tensor ring decomposition (TRD) has drawn people’s attention
due to its high representation ability and multi-linear property. The most significant advantage
of TRD is that the model complexity does not grow exponentially in the tensor order. In this
way, TRD can effectively overcome the ‘curse of dimensionality’ and becomes a powerful
tool to process large-scale and high-order tensors.

This thesis focuses on exploring the theories and applications of TRD. The main contri-
bution is to propose various TRD-based algorithms of high efficiency and high performance.
Firstly, aiming at the problem of image recovery, a gradient-based tensor completion algorithm
is developed. Compared with the traditional methods, our algorithm performs significantly
better in the image of high-order and high missing rate. Secondly, two rank-robust TRD
algorithms are proposed by imposing nuclear norm on TR factors. The algorithms are based
on the theoretical proof of the rank relationship between the tensor and the TR factors, and
they can successfully alleviate the burden of rank selection in tensor completion tasks. Thirdly,
an efficient TRD algorithm is proposed based on the novel TR-max-norm regularizer which is
theoretically proved to regularize the TR-rank of the tensor. Compared with the traditional
algorithms, the proposed algorithm shows steady convergence and higher performance in
large-scale tensor completion tasks. Fourthly, a fast TRD algorithm is provided based on the
novel technique named tensor random projection. The proposed algorithm largely reduces the
computational cost in comparison with the traditional ones and can be applied to large-scale
tensor denoising. The work in the thesis has enriched the theoretical study and applications of
TRD, which contribute to the tensor methodology and will be a good reference in the research
and industry fields.

HTTPS://WWW.SIT.AC.JP/
https://www.sit.ac.jp/gakubu_in/kougaku/
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Chapter 1

Introduction

Tensors are the high-order generalizations of vectors and matrices. Representing data by tensor
can retain the high-order form of data and retain adjacent structure information of data. Most
of the real-world data are more than two orders. For example, RGB images are order-3 tensors
(height×width× channel ), videos are order-4 tensors (height×width× channel× time)
and electroencephalography (EEG) signals are order-3 tensors (magnitude× trails× time).
When facing data with more than two orders, traditional methods usually transform data into
matrices or vectors by concatenation, which leads to spatial redundancy and less efficient
factorization [1]. In recent years, many theories, algorithms and applications of tensor
methodologies have been studied and proposed [2–4]. Due to the high compression ability
and data representation ability of tensor methods, many applications have been proposed
in a variety of fields such as image and video completion [5, 6], signal processing [7, 8],
brain-computer interface [9], image classification [10], etc.

One of the most important tools for tensor is tensor decomposition, which aims to find
the latent factors of tensor-valued data (i.e. the generalization of multi-dimensional arrays),
thereby casting large-scale tensors into a multilinear tensor space of low-dimensionality (very
few degrees of freedom designated by the rank). Tensor factors can then be considered as latent
features of data, and in this way can represent the data economically and predict missing entries
when the data is incomplete. The specific form and operations among latent factors define the
type of tensor decomposition. A variety of tensor decomposition models have been applied
in diverse fields such as machine learning [11–13] and signal processing [14, 15]. Tucker
decomposition (TKD) and CANDECOMP/PARAFAC decomposition (CPD) are classical
tensor decomposition models, which have been studied for nearly half a century [2, 16, 17]. In
recent years, a novel tensor decomposition named tensor ring decomposition (TRD) [18] has
drawn people’s attention, due to its super compressive ability and multi-linear representation.
Compared with CPD and TKD, the tensor ring decomposition owns the good numerical
property and the model complexity grows linearly in tensor order, thus can achieve fast
decomposition of high-order and large-scale tensor efficiently.

Tensor completion aims to recover an incomplete tensor from partially observed entries.
The theoretical lynchpin in matrix or tensor completion problems is the low-rank assumption,
and tensor completion has been applied in various applications such as image/video completion
[6, 19], recommendation systems [20], link prediction [21], compressed sensing [22], to name
but a few. Since the determination of tensor rank is an NP-hard problem [2, 23], many tensor
low-rank surrogates were proposed for tensor completion. One such surrogate is the nuclear
norm (a.k.a. Schatten norm, or trace norm), which is defined as the sum of singular values
of a matrix, and is the most popular convex surrogate for rank regularization. Unlike matrix
completion problems, the Schatten norm model of a tensor is hard to formulate. Recent studies
mainly focus on two convex relaxation models of tensor Schatten norm, the “overlapped”
model [19, 24–27] and the “latent” [24, 28] model.

The thesis studies on tensor decomposition and tensor completion based on tensor ring
decomposition (TRD), aiming to develop efficient and high-performance data processing
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methods based on tensor methodologies, and employ them to various practical applications.
Chapter 1 firstly introduces the contributions of this thesis. Then the background of tensor,
tensor decomposition and tensor completion is provided. In Chapter 2, the tensor ring
weighted optimization algorithm (TR-WOPT) is introduced, which is a gradient-based tensor
completion algorithm and can be applied to high-order completion. Moreover, a visual data
tensorization (VDT) method is provided to transform visual data into higher-order tensors to
find more structure information of the data. IN order to solve the multi-linear rank selection
problem of TRD, in Chapter 3, the relation between the rank of tensor and rank of TR factors
are theoretically deduced, then, the tensor nuclear norm is imposed on the TR-factors by
different schemes. Then, two tensor completion methods are proposed and efficiently solved
by alternating direction method of multipliers (ADMM) algorithm. In Chapter 4, a novel low-
TR-rank regularizer termed as TR-max-norm is proposed, which extends the matrix max-norm
to tensor in TR format. The TRD model with TR-max-norm is formulated and efficiently
solved by projected mini-batch stochastic gradient descent algorithm. The proposed algorithm
shows faster convergence and higher performance than its traditional counterpart. In order to
fill the gap that there lack large-scale TRD algorithms, in Chapter 5, a computational scheme
based on tensor random projection (TRP) is provided. The scheme can be applied to various
existing TRD algorithms and largely decrease the computation cost. The reconstruction and
denoising experiments of large-scale tensor show the superior performance and computational
speed of the proposed scheme. Chapter 6 provides the overall conclusion of the thesis and
the future outlook.

1.1 Summary of contributions

1.1.1 High-order tensor completion by tensor ring decomposition

Taking advantages of high compressibility and good performance in high-order tensor decom-
position of TRD, a new tensor completion approach named tensor ring weighted optimization
(TR-WOPT) is proposed. It finds the latent factors of the incomplete tensor by gradient descent
algorithm, then the latent factors are employed to predict the missing entries of the tensor. In
addition, a method named Visual Data Tensorization (VDT) is proposed to transform visual
data into higher-order tensors, resulting in the performance improvement of our algorithms.
Furthermore, image completion results show that our proposed algorithm outperforms the
related algorithms in many situations, especially in the high-order and high missing rate
situations.

1.1.2 Rank-robust tensor ring decomposition and completion

In tensor completion tasks, the traditional low-rank tensor decomposition models suffer from
the laborious model selection problem due to their high model sensitivity. In particular, for
TRD, the number of model possibilities grows exponentially with the tensor order, which
makes it rather challenging to find the optimal TR-rank for the tensor. By exploiting the
low-rank structure of the TR latent space, this work proposes a novel tensor completion
method which is robust to model selection. In contrast to imposing the low-rank constraint on
the data space, we introduce nuclear norm regularization on the latent TR factors, resulting
in the optimization step using singular value decomposition (SVD) being performed at a
much smaller scale. By leveraging the alternating direction method of multipliers (ADMM)
scheme, the latent TR factors with optimal rank and the recovered tensor can be obtained
simultaneously. The proposed algorithm is shown to effectively alleviate the burden of TR-rank
selection, thereby greatly reducing the computational cost. The extensive experimental results
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on both synthetic and real-world data demonstrate the superior performance and efficiency of
the proposed approach against state-of-the-art algorithms.

1.1.3 Max-norm regularized tensor ring decomposition

The existing TRD-based algorithms are of high computational cost and the convergence
instability is another challenging problem which remains unsolved. To this end, by leveraging
the high efficiency and stability of the max-norm in matrix completion, the matrix max-norm
is extended it to the tensor field by TRD and the TR-max-norm is developed which is proved
to be a low-TR-rank regularizer for tensors. Compared to the nuclear norm regularization
which has to conduct multiple singular value decomposition (SVD) on the whole tensor
scale, the TR-max-norm is processed on the TR latent space, which drastically reduces the
computational cost. An efficient TRD algorithm with TR-max-norm regularization is thus
developed based on the projected mini-batch stochastic gradient descent (PMSGD) scheme
which can be applied to large-scale data processing. The experimental results on simulation
experiments show the fast and stable convergence of our algorithm.

1.1.4 Large-scale tensor denoising via tensor ring decomposition

Dimensionality reduction is an essential technique for multi-way large-scale data, i.e., tensor.
The traditional TRD algorithms suffer from high computational cost when facing large-scale
data. Taking advantages of the recently proposed tensor random projection (TRP) method, a
randomized TRD scheme is proposed. By employing random projection on every mode of the
large-scale tensor, the TRD can be processed at a much smaller scale. The large-scale tensor
reconstruction and denoising experiments show the huge speed-up without loss of accuracy
and the superior performance of the proposed scheme compared to the traditional counterparts
and the other randomized algorithms.

1.2 Tensor preliminaries

1.2.1 Notations

Notations in [2] are adopted in this thesis. A scalar is denoted by a normal lowercase/uppercase
letter, e.g., x, X ∈ R, a vector is denoted by a boldface lowercase letter, e.g., x ∈ RI , a matrix
is denoted by a boldface capital letter, e.g., X ∈ RI×J , a tensor of order N ≥ 3 is denoted by
an Euler script letter, e.g., X ∈ RI1×I2×···×IN .

A sequence of tensor {X (1),X (2), . . . ,X (N)} is denoted by {X (n)}N
n=1, or simply

[X ], in which X (n) is the n-th tensor of the sequence. The matrix sequences and vector
sequences are defined in the same way. An element of tensor X ∈ RI1×I2×···×IN of index
{i1, i2, · · · , iN} is denoted by xi1i2···iN or X (i1, i2, · · · , iN).

Furthermore, the inner product of two tensor X , Y with the same size RI1×I2×···×IN is
defined as 〈X ,Y〉 = ∑i1 ∑i2 · · ·∑iN

xi1i2···iN yi1i2···iN . The Frobenius norm of X is defined
by ‖X ‖F =

√
〈X ,X 〉. The Hadamard product is denoted by “∗” and it is an element-

wise product of vectors, matrices or tensors of the same size. For instance, given tensors
X ,Y ∈ RI1×I2×···×IN , Z = X ∗Y , then Z ∈ RI1×I2×···×IN and zi1i2···iN = xi1i2···iN yi1i2···iN

are satisfied. The Kronecker product of two matrices X ∈ RI×K and Y ∈ RJ×L is X⊗ Y ∈
RI J×KL, see more details in [2].
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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. . .
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Rn
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Rn+1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

. . .
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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(a) Circular permutation of tensor 
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

. . .
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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(b) Merging of TR factors
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(a) Circular permutation of tensor 

FIGURE 1.1: Diagrams of two tensor operations.

1.2.2 Tensor operations

Tensor unfolding. We employ three types of tensor unfolding (matricization) operations in
this thesis. The standard mode-n unfolding [2] of tensor X ∈ RI1×I2×···×IN is denoted by
X(n) ∈ RIn×I1···In−1 In+1···IN . The second mode-n unfolding operation of tensor X which is
often used in TR operations [18] is denoted by X<n> ∈ RIn×In+1···IN I1···In−1 . The third kind of
mode-n unfolding of tensor X is denoted by X[n] ∈ RI1···In×In+1···IN which is often applied in
tensor train operations [29]. Furthermore, the inverse operation of unfolding is matrix folding
(tensorization), which transforms matrices to higher-order tensors. The folding operations
of the three types of mode-n unfoldings are defined as fold(n)(·), fold<n>(·) and fold[n](·)
respectively, i.e., for a tensor X , we have fold(n)(X(n)) = X .
Tensor circular permutation. The tensor circular permutation is to shift the tensor order by
one direction. For example, if we anticlockwise-shift a tensor X ∈ RI1×···×IN by c steps, the
output tensor is denoted by X←−c ∈ RIc+1×···×IN×I1×···×Ic .
Tensor product. The mode-n product of tensor X ∈ RI1×I2×···×In×···×IN and matrix
B ∈ RJ×In is denoted by Z = X ×n B = fold(n)(BX(n)).
Tensor factors merging [30]. Taking the TR factors merging as an example, the adjacent
TR factors can be merged by reshaping and multiple matrix multiplication operations. For TR
factors of size G(n) ∈ RRn×In×Rn+1 , the contiguous subchain of the TR factors denoted by
{G(i),G(i+1), · · · ,G(j)} can be merged as: G(i,i+1,...,j) ∈ RRi×∏

j
k=i Ik×Rj+1

These basic tensor operations will be used in the following demonstrations of our work.
The diagram of tensor circular permutation and TR factors merging are shown in Figure 1.1.

1.3 Tensor decomposition models

CANDECOMP/PARAFAC decomposition (CPD) [31] and Tucker decomposition (TKD) [16]
are the most classical and well-studied tensor decomposition models, after which tensor train
decomposition (TTD) [29] and tensor ring decomposition (TRD) [18] become popular because
of their high compression performance in high-order and large-scale tensor. TT decomposition
and TR decomposition provide natural solutions for the ‘curse of dimensionality’. For instance,
for an Nth-order tensor, the space complexity of Tucker grows exponentially in N, while the
cases of TT, TR and CP are linear in N. Although CP is a highly compact decomposition
model of which the space complexity is also linear in N, it has difficulties in finding the optimal
latent tensor factors [32]. In the following sections, we mainly introduce the background of
TTD and TRD.

1.3.1 Tensor train decomposition

Tensor train decomposition (TTD) is to decompose a tensor into a sequence of two matrices
and N − 2 order-three core tensors (factor tensors): G(1),G(2), · · · , G(N). The relation
between the approximated tensor X ∈ RI1×I2×···×IN and core tensors can be expressed as
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Figure 1: The effects of noise corrupted tensor cores. From left to right, each figure shows noise
corruption by adding noise to one specific tensor core.
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Figure 2: A graphical representation of tensor ring decomposition.

limited representation ability and flexibility; ii) TT-ranks are bounded by the rank of k-unfolding
matricization, which might not be optimal; iii) the permutation of data tensor will yield an inconsistent
solution, i.e., TT representations and TT-ranks are sensitive to the order of tensor dimensions. Hence,
finding the optimal permutation remains a challenging problem.

In this paper, we introduce a new structure of tensor networks, which can be considered as a
generalization of TT representations. First of all, we relax the condition over TT-ranks, i.e., r1 =
rd+1 = 1, leading to an enhanced representation ability. Secondly, the strict ordering of multilinear
products between cores should be alleviated. Third, the cores should be treated equivalently by
making the model symmetric. To this end, we add a new connection between the first and the last
core tensors, yielding a circular tensor products of a set of cores (see Fig. 2). More specifically, we
consider that each tensor element is approximated by performing a trace operation over the sequential
multilinear products of cores. Since the trace operation ensures a scalar output, r1 = rd+1 = 1 is
not necessary. In addition, the cores can be circularly shifted and treated equivalently due to the
properties of the trace operation. We call this model tensor ring (TR) decomposition and its cores
tensor ring (TR) representations. To learn TR representations, we firstly develop a non-iterative
TR-SVD algorithm that is similar to TT-SVD algorithm (Oseledets, 2011). To find the optimal lower
TR-ranks, a block-wise ALS algorithms is presented. Finally, we also propose a scalable algorithm
by using stochastic gradient descend, which can be applied to handling large-scale datasets.

Another interesting contribution is that we show the intrinsic structure or high order correlations
within a 2D image can be captured more efficiently than SVD by converting 2D matrix to a higher
order tensor. For example, given an image of size I ⇥ J , we can apply an appropriate tensorization
operation (see details in Sec. 5.2) to obtain a fourth order tensor, of which each mode controls one
specific scale of resolution. To demonstrate this, Fig. 1 shows the effects caused by noise corruption
of specific tensor cores. As we can see, the first mode corresponds to the small-scale patches, while
the 4th-mode corresponds to the large-scale partitions. We have shown in Sec. 5.2 that TR model can
represent the image more efficiently than the standard SVD.

2 TENSOR RING DECOMPOSITION

The TR decomposition aims to represent a high-order (or multi-dimensional) tensor by a sequence
of 3rd-order tensors that are multiplied circularly. Specifically, let T be a dth-order tensor of size
n1⇥n2⇥ · · ·⇥nd, denoted by T 2 Rn1⇥···⇥nd , TR representation is to decompose it into a sequence
of latent tensors Zk 2 Rrk⇥nk⇥rk+1 , k = 1, 2, . . . , d, which can be expressed in an element-wise
form given by

T (i1, i2, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd(id)} = Tr

(
dY

k=1

Zk(ik)

)
. (1)

2
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I2<latexit sha1_base64="5LRvO5i0sC0Ty7icNm9FgIM00Ms=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoL0VvOitorGFNpTNdtIu3WzC7kYopT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWj65nfekKleSIfzDjFIKYDySPOqLHS/W2v1itX3Ko7B1klXk4qkKPZK391+wnLYpSGCap1x3NTE0yoMpwJnJa6mcaUshEdYMdSSWPUwWR+6pScWaVPokTZkobM1d8TExprPY5D2xlTM9TL3kz8z+tkJroKJlymmUHJFouiTBCTkNnfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2/vEr8WrVede8uKo16nkYRTuAUzsGDS2jADTTBBwYDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPzCGjTw=</latexit><latexit sha1_base64="5LRvO5i0sC0Ty7icNm9FgIM00Ms=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoL0VvOitorGFNpTNdtIu3WzC7kYopT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWj65nfekKleSIfzDjFIKYDySPOqLHS/W2v1itX3Ko7B1klXk4qkKPZK391+wnLYpSGCap1x3NTE0yoMpwJnJa6mcaUshEdYMdSSWPUwWR+6pScWaVPokTZkobM1d8TExprPY5D2xlTM9TL3kz8z+tkJroKJlymmUHJFouiTBCTkNnfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2/vEr8WrVede8uKo16nkYRTuAUzsGDS2jADTTBBwYDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPzCGjTw=</latexit><latexit sha1_base64="5LRvO5i0sC0Ty7icNm9FgIM00Ms=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoL0VvOitorGFNpTNdtIu3WzC7kYopT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWj65nfekKleSIfzDjFIKYDySPOqLHS/W2v1itX3Ko7B1klXk4qkKPZK391+wnLYpSGCap1x3NTE0yoMpwJnJa6mcaUshEdYMdSSWPUwWR+6pScWaVPokTZkobM1d8TExprPY5D2xlTM9TL3kz8z+tkJroKJlymmUHJFouiTBCTkNnfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2/vEr8WrVede8uKo16nkYRTuAUzsGDS2jADTTBBwYDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPzCGjTw=</latexit>

I2<latexit sha1_base64="5LRvO5i0sC0Ty7icNm9FgIM00Ms=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoL0VvOitorGFNpTNdtIu3WzC7kYopT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWj65nfekKleSIfzDjFIKYDySPOqLHS/W2v1itX3Ko7B1klXk4qkKPZK391+wnLYpSGCap1x3NTE0yoMpwJnJa6mcaUshEdYMdSSWPUwWR+6pScWaVPokTZkobM1d8TExprPY5D2xlTM9TL3kz8z+tkJroKJlymmUHJFouiTBCTkNnfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2/vEr8WrVede8uKo16nkYRTuAUzsGDS2jADTTBBwYDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPzCGjTw=</latexit><latexit sha1_base64="5LRvO5i0sC0Ty7icNm9FgIM00Ms=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoL0VvOitorGFNpTNdtIu3WzC7kYopT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWj65nfekKleSIfzDjFIKYDySPOqLHS/W2v1itX3Ko7B1klXk4qkKPZK391+wnLYpSGCap1x3NTE0yoMpwJnJa6mcaUshEdYMdSSWPUwWR+6pScWaVPokTZkobM1d8TExprPY5D2xlTM9TL3kz8z+tkJroKJlymmUHJFouiTBCTkNnfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2/vEr8WrVede8uKo16nkYRTuAUzsGDS2jADTTBBwYDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPzCGjTw=</latexit><latexit sha1_base64="5LRvO5i0sC0Ty7icNm9FgIM00Ms=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoL0VvOitorGFNpTNdtIu3WzC7kYopT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWj65nfekKleSIfzDjFIKYDySPOqLHS/W2v1itX3Ko7B1klXk4qkKPZK391+wnLYpSGCap1x3NTE0yoMpwJnJa6mcaUshEdYMdSSWPUwWR+6pScWaVPokTZkobM1d8TExprPY5D2xlTM9TL3kz8z+tkJroKJlymmUHJFouiTBCTkNnfpM8VMiPGllCmuL2VsCFVlBmbTsmG4C2/vEr8WrVede8uKo16nkYRTuAUzsGDS2jADTTBBwYDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPzCGjTw=</latexit>

IN<latexit sha1_base64="QVYs27g/9a4Jbga5Q6E5OIMBGPE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lF0N4KXvQiFY0ttKFstpN26WYTdjdCCf0JXjyoePUfefPfuG1z0NYHA4/3ZpiZFySCa+O6305hZXVtfaO4Wdra3tndK+8fPOo4VQw9FotYtQOqUXCJnuFGYDtRSKNAYCsYXU391hMqzWP5YMYJ+hEdSB5yRo2V7m96t71yxa26M5BlUstJBXI0e+Wvbj9maYTSMEG17tTcxPgZVYYzgZNSN9WYUDaiA+xYKmmE2s9mp07IiVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeGln3GZpAYlmy8KU0FMTKZ/kz5XyIwYW0KZ4vZWwoZUUWZsOiUbQm3x5WXinVXrVffuvNKo52kU4QiO4RRqcAENuIYmeMBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wda2o1Y</latexit><latexit sha1_base64="QVYs27g/9a4Jbga5Q6E5OIMBGPE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lF0N4KXvQiFY0ttKFstpN26WYTdjdCCf0JXjyoePUfefPfuG1z0NYHA4/3ZpiZFySCa+O6305hZXVtfaO4Wdra3tndK+8fPOo4VQw9FotYtQOqUXCJnuFGYDtRSKNAYCsYXU391hMqzWP5YMYJ+hEdSB5yRo2V7m96t71yxa26M5BlUstJBXI0e+Wvbj9maYTSMEG17tTcxPgZVYYzgZNSN9WYUDaiA+xYKmmE2s9mp07IiVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeGln3GZpAYlmy8KU0FMTKZ/kz5XyIwYW0KZ4vZWwoZUUWZsOiUbQm3x5WXinVXrVffuvNKo52kU4QiO4RRqcAENuIYmeMBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wda2o1Y</latexit><latexit sha1_base64="QVYs27g/9a4Jbga5Q6E5OIMBGPE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lF0N4KXvQiFY0ttKFstpN26WYTdjdCCf0JXjyoePUfefPfuG1z0NYHA4/3ZpiZFySCa+O6305hZXVtfaO4Wdra3tndK+8fPOo4VQw9FotYtQOqUXCJnuFGYDtRSKNAYCsYXU391hMqzWP5YMYJ+hEdSB5yRo2V7m96t71yxa26M5BlUstJBXI0e+Wvbj9maYTSMEG17tTcxPgZVYYzgZNSN9WYUDaiA+xYKmmE2s9mp07IiVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeGln3GZpAYlmy8KU0FMTKZ/kz5XyIwYW0KZ4vZWwoZUUWZsOiUbQm3x5WXinVXrVffuvNKo52kU4QiO4RRqcAENuIYmeMBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wda2o1Y</latexit>

IN<latexit sha1_base64="QVYs27g/9a4Jbga5Q6E5OIMBGPE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lF0N4KXvQiFY0ttKFstpN26WYTdjdCCf0JXjyoePUfefPfuG1z0NYHA4/3ZpiZFySCa+O6305hZXVtfaO4Wdra3tndK+8fPOo4VQw9FotYtQOqUXCJnuFGYDtRSKNAYCsYXU391hMqzWP5YMYJ+hEdSB5yRo2V7m96t71yxa26M5BlUstJBXI0e+Wvbj9maYTSMEG17tTcxPgZVYYzgZNSN9WYUDaiA+xYKmmE2s9mp07IiVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeGln3GZpAYlmy8KU0FMTKZ/kz5XyIwYW0KZ4vZWwoZUUWZsOiUbQm3x5WXinVXrVffuvNKo52kU4QiO4RRqcAENuIYmeMBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wda2o1Y</latexit><latexit sha1_base64="QVYs27g/9a4Jbga5Q6E5OIMBGPE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lF0N4KXvQiFY0ttKFstpN26WYTdjdCCf0JXjyoePUfefPfuG1z0NYHA4/3ZpiZFySCa+O6305hZXVtfaO4Wdra3tndK+8fPOo4VQw9FotYtQOqUXCJnuFGYDtRSKNAYCsYXU391hMqzWP5YMYJ+hEdSB5yRo2V7m96t71yxa26M5BlUstJBXI0e+Wvbj9maYTSMEG17tTcxPgZVYYzgZNSN9WYUDaiA+xYKmmE2s9mp07IiVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeGln3GZpAYlmy8KU0FMTKZ/kz5XyIwYW0KZ4vZWwoZUUWZsOiUbQm3x5WXinVXrVffuvNKo52kU4QiO4RRqcAENuIYmeMBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wda2o1Y</latexit><latexit sha1_base64="QVYs27g/9a4Jbga5Q6E5OIMBGPE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lF0N4KXvQiFY0ttKFstpN26WYTdjdCCf0JXjyoePUfefPfuG1z0NYHA4/3ZpiZFySCa+O6305hZXVtfaO4Wdra3tndK+8fPOo4VQw9FotYtQOqUXCJnuFGYDtRSKNAYCsYXU391hMqzWP5YMYJ+hEdSB5yRo2V7m96t71yxa26M5BlUstJBXI0e+Wvbj9maYTSMEG17tTcxPgZVYYzgZNSN9WYUDaiA+xYKmmE2s9mp07IiVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeGln3GZpAYlmy8KU0FMTKZ/kz5XyIwYW0KZ4vZWwoZUUWZsOiUbQm3x5WXinVXrVffuvNKo52kU4QiO4RRqcAENuIYmeMBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wda2o1Y</latexit>

In
<latexit sha1_base64="Vz3oijCeKvUFwa+Eml0ScRB70i8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI2lvBi94qGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nZXVtfWNzdJWeXtnd2+/cnD4qJNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0PfVbT6g0T+SDGacYxHQgecQZNVa6v+3JXqXq1twZyDLxClKFAs1e5avbT1gWozRMUK07npuaIKfKcCZwUu5mGlPKRnSAHUsljVEH+ezUCTm1Sp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9G/S5wqZEWNLKFPc3krYkCrKjE2nbEPwFl9eJv55rV5z7y6qjXqRRgmO4QTOwINLaMANNMEHBgN4hld4c4Tz4rw7H/PWFaeYOYI/cD5/AIs6jXg=</latexit><latexit sha1_base64="Vz3oijCeKvUFwa+Eml0ScRB70i8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI2lvBi94qGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nZXVtfWNzdJWeXtnd2+/cnD4qJNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0PfVbT6g0T+SDGacYxHQgecQZNVa6v+3JXqXq1twZyDLxClKFAs1e5avbT1gWozRMUK07npuaIKfKcCZwUu5mGlPKRnSAHUsljVEH+ezUCTm1Sp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9G/S5wqZEWNLKFPc3krYkCrKjE2nbEPwFl9eJv55rV5z7y6qjXqRRgmO4QTOwINLaMANNMEHBgN4hld4c4Tz4rw7H/PWFaeYOYI/cD5/AIs6jXg=</latexit><latexit sha1_base64="Vz3oijCeKvUFwa+Eml0ScRB70i8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI2lvBi94qGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nZXVtfWNzdJWeXtnd2+/cnD4qJNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0PfVbT6g0T+SDGacYxHQgecQZNVa6v+3JXqXq1twZyDLxClKFAs1e5avbT1gWozRMUK07npuaIKfKcCZwUu5mGlPKRnSAHUsljVEH+ezUCTm1Sp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9G/S5wqZEWNLKFPc3krYkCrKjE2nbEPwFl9eJv55rV5z7y6qjXqRRgmO4QTOwINLaMANNMEHBgN4hld4c4Tz4rw7H/PWFaeYOYI/cD5/AIs6jXg=</latexit>

In
<latexit sha1_base64="Vz3oijCeKvUFwa+Eml0ScRB70i8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI2lvBi94qGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nZXVtfWNzdJWeXtnd2+/cnD4qJNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0PfVbT6g0T+SDGacYxHQgecQZNVa6v+3JXqXq1twZyDLxClKFAs1e5avbT1gWozRMUK07npuaIKfKcCZwUu5mGlPKRnSAHUsljVEH+ezUCTm1Sp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9G/S5wqZEWNLKFPc3krYkCrKjE2nbEPwFl9eJv55rV5z7y6qjXqRRgmO4QTOwINLaMANNMEHBgN4hld4c4Tz4rw7H/PWFaeYOYI/cD5/AIs6jXg=</latexit><latexit sha1_base64="Vz3oijCeKvUFwa+Eml0ScRB70i8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI2lvBi94qGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nZXVtfWNzdJWeXtnd2+/cnD4qJNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0PfVbT6g0T+SDGacYxHQgecQZNVa6v+3JXqXq1twZyDLxClKFAs1e5avbT1gWozRMUK07npuaIKfKcCZwUu5mGlPKRnSAHUsljVEH+ezUCTm1Sp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9G/S5wqZEWNLKFPc3krYkCrKjE2nbEPwFl9eJv55rV5z7y6qjXqRRgmO4QTOwINLaMANNMEHBgN4hld4c4Tz4rw7H/PWFaeYOYI/cD5/AIs6jXg=</latexit><latexit sha1_base64="Vz3oijCeKvUFwa+Eml0ScRB70i8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KokI2lvBi94qGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nZXVtfWNzdJWeXtnd2+/cnD4qJNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0PfVbT6g0T+SDGacYxHQgecQZNVa6v+3JXqXq1twZyDLxClKFAs1e5avbT1gWozRMUK07npuaIKfKcCZwUu5mGlPKRnSAHUsljVEH+ezUCTm1Sp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9G/S5wqZEWNLKFPc3krYkCrKjE2nbEPwFl9eJv55rV5z7y6qjXqRRgmO4QTOwINLaMANNMEHBgN4hld4c4Tz4rw7H/PWFaeYOYI/cD5/AIs6jXg=</latexit>

· · ·<latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit><latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit><latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit>

· · ·<latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit><latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit><latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit>

· · ·<latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit><latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit><latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit>

· · ·<latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit><latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit><latexit sha1_base64="71MNtDplGt4aEzD9uEEQp2QnnHY=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lVQE7a3gxWMFYwttKJvNpl262Q27E6GE/ggvHlS8+n+8+W/ctDlo64OBx3szzMwLU8ENet63s7a+sbm1Xdmp7u7tHxzWjo4fjco0ZT5VQuleSAwTXDIfOQrWSzUjSShYN5zcFn73iWnDlXzAacqChIwkjzklaKXugEYKTXVYq3sNbw53lTRLUocSnWHtaxApmiVMIhXEmH7TSzHIiUZOBZtVB5lhKaETMmJ9SyVJmAny+bkz99wqkRsrbUuiO1d/T+QkMWaahLYzITg2y14h/uf1M4xvgpzLNEMm6WJRnAkXlVv87kZcM4piagmhmttbXTommlC0CRUhNJdfXiX+ZaPV8O6v6u1WmUYFTuEMLqAJ19CGO+iADxQm8Ayv8Oakzovz7nwsWteccuYE/sD5/AFONI8N</latexit>

· · ·<latexit sha1_base64="F9nsRaTe7ujR44aLdk07GVFawH8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqaQiqBcpePFYwdhCG8pms2mXbnbD7kQooT/CiwcVr/4fb/4bN20OWn0w8Hhvhpl5YSq4Qc/7ciorq2vrG9XN2tb2zu5eff/gwahMU+ZTJZTuhcQwwSXzkaNgvVQzkoSCdcPJTeF3H5k2XMl7nKYsSMhI8phTglbqDmik0NSG9YbX9OZw/5JWSRpQojOsfw4iRbOESaSCGNNveSkGOdHIqWCz2iAzLCV0Qkasb6kkCTNBPj935p5YJXJjpW1JdOfqz4mcJMZMk9B2JgTHZtkrxP+8fobxZZBzmWbIJF0sijPhonKL392Ia0ZRTC0hVHN7q0vHRBOKNqEihNbyy3+Jf9a8anp35432dZlGFY7gGE6hBRfQhlvogA8UJvAEL/DqpM6z8+a8L1orTjlzCL/gfHwDT7WPEg==</latexit><latexit sha1_base64="F9nsRaTe7ujR44aLdk07GVFawH8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqaQiqBcpePFYwdhCG8pms2mXbnbD7kQooT/CiwcVr/4fb/4bN20OWn0w8Hhvhpl5YSq4Qc/7ciorq2vrG9XN2tb2zu5eff/gwahMU+ZTJZTuhcQwwSXzkaNgvVQzkoSCdcPJTeF3H5k2XMl7nKYsSMhI8phTglbqDmik0NSG9YbX9OZw/5JWSRpQojOsfw4iRbOESaSCGNNveSkGOdHIqWCz2iAzLCV0Qkasb6kkCTNBPj935p5YJXJjpW1JdOfqz4mcJMZMk9B2JgTHZtkrxP+8fobxZZBzmWbIJF0sijPhonKL392Ia0ZRTC0hVHN7q0vHRBOKNqEihNbyy3+Jf9a8anp35432dZlGFY7gGE6hBRfQhlvogA8UJvAEL/DqpM6z8+a8L1orTjlzCL/gfHwDT7WPEg==</latexit><latexit sha1_base64="F9nsRaTe7ujR44aLdk07GVFawH8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqaQiqBcpePFYwdhCG8pms2mXbnbD7kQooT/CiwcVr/4fb/4bN20OWn0w8Hhvhpl5YSq4Qc/7ciorq2vrG9XN2tb2zu5eff/gwahMU+ZTJZTuhcQwwSXzkaNgvVQzkoSCdcPJTeF3H5k2XMl7nKYsSMhI8phTglbqDmik0NSG9YbX9OZw/5JWSRpQojOsfw4iRbOESaSCGNNveSkGOdHIqWCz2iAzLCV0Qkasb6kkCTNBPj935p5YJXJjpW1JdOfqz4mcJMZMk9B2JgTHZtkrxP+8fobxZZBzmWbIJF0sijPhonKL392Ia0ZRTC0hVHN7q0vHRBOKNqEihNbyy3+Jf9a8anp35432dZlGFY7gGE6hBRfQhlvogA8UJvAEL/DqpM6z8+a8L1orTjlzCL/gfHwDT7WPEg==</latexit>

G1
<latexit sha1_base64="Q9q0uwUrDmQOUuRrqNt0XHBqGp4=">AAAB9HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnqRggc9VnBtoV1LNs22odlkSbJKWfo/vHhQ8eqP8ea/MdvuQVsHAsPMe7zJhAln2rjut1NaWl5ZXSuvVzY2t7Z3qrt791qmilCfSC5VO8Saciaob5jhtJ0oiuOQ01Y4usr91iNVmklxZ8YJDWI8ECxiBBsrPXRjbIYE8+x60vMqvWrNrbtToEXiFaQGBZq96le3L0kaU2EIx1p3PDcxQYaVYYTTSaWbappgMsID2rFU4JjqIJumnqAjq/RRJJV9wqCp+nsjw7HW4zi0k3lKPe/l4n9eJzXReZAxkaSGCjI7FKUcGYnyClCfKUoMH1uCiWI2KyJDrDAxtqi8BG/+y4vEP6lf1N3b01rjsmijDAdwCMfgwRk04Aaa4AMBBc/wCm/Ok/PivDsfs9GSU+zswx84nz9IW5Hk</latexit><latexit sha1_base64="Q9q0uwUrDmQOUuRrqNt0XHBqGp4=">AAAB9HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnqRggc9VnBtoV1LNs22odlkSbJKWfo/vHhQ8eqP8ea/MdvuQVsHAsPMe7zJhAln2rjut1NaWl5ZXSuvVzY2t7Z3qrt791qmilCfSC5VO8Saciaob5jhtJ0oiuOQ01Y4usr91iNVmklxZ8YJDWI8ECxiBBsrPXRjbIYE8+x60vMqvWrNrbtToEXiFaQGBZq96le3L0kaU2EIx1p3PDcxQYaVYYTTSaWbappgMsID2rFU4JjqIJumnqAjq/RRJJV9wqCp+nsjw7HW4zi0k3lKPe/l4n9eJzXReZAxkaSGCjI7FKUcGYnyClCfKUoMH1uCiWI2KyJDrDAxtqi8BG/+y4vEP6lf1N3b01rjsmijDAdwCMfgwRk04Aaa4AMBBc/wCm/Ok/PivDsfs9GSU+zswx84nz9IW5Hk</latexit><latexit sha1_base64="Q9q0uwUrDmQOUuRrqNt0XHBqGp4=">AAAB9HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnqRggc9VnBtoV1LNs22odlkSbJKWfo/vHhQ8eqP8ea/MdvuQVsHAsPMe7zJhAln2rjut1NaWl5ZXSuvVzY2t7Z3qrt791qmilCfSC5VO8Saciaob5jhtJ0oiuOQ01Y4usr91iNVmklxZ8YJDWI8ECxiBBsrPXRjbIYE8+x60vMqvWrNrbtToEXiFaQGBZq96le3L0kaU2EIx1p3PDcxQYaVYYTTSaWbappgMsID2rFU4JjqIJumnqAjq/RRJJV9wqCp+nsjw7HW4zi0k3lKPe/l4n9eJzXReZAxkaSGCjI7FKUcGYnyClCfKUoMH1uCiWI2KyJDrDAxtqi8BG/+y4vEP6lf1N3b01rjsmijDAdwCMfgwRk04Aaa4AMBBc/wCm/Ok/PivDsfs9GSU+zswx84nz9IW5Hk</latexit>

G2
<latexit sha1_base64="S/xPvMskHXI1CRHpwRrWy4JlwpQ=">AAAB9HicbVBNSwMxFHzrZ61fVY9egkXwVHaLoF6k4EGPFVxbaNeSTbNtaDZZkqxSlv4PLx5UvPpjvPlvzLZ70NaBwDDzHm8yYcKZNq777Swtr6yurZc2yptb2zu7lb39ey1TRahPJJeqHWJNORPUN8xw2k4UxXHIaSscXeV+65EqzaS4M+OEBjEeCBYxgo2VHroxNkOCeXY96dXLvUrVrblToEXiFaQKBZq9yle3L0kaU2EIx1p3PDcxQYaVYYTTSbmbappgMsID2rFU4JjqIJumnqBjq/RRJJV9wqCp+nsjw7HW4zi0k3lKPe/l4n9eJzXReZAxkaSGCjI7FKUcGYnyClCfKUoMH1uCiWI2KyJDrDAxtqi8BG/+y4vEr9cuau7tabVxWbRRgkM4ghPw4AwacANN8IGAgmd4hTfnyXlx3p2P2eiSU+wcwB84nz9J35Hl</latexit><latexit sha1_base64="S/xPvMskHXI1CRHpwRrWy4JlwpQ=">AAAB9HicbVBNSwMxFHzrZ61fVY9egkXwVHaLoF6k4EGPFVxbaNeSTbNtaDZZkqxSlv4PLx5UvPpjvPlvzLZ70NaBwDDzHm8yYcKZNq777Swtr6yurZc2yptb2zu7lb39ey1TRahPJJeqHWJNORPUN8xw2k4UxXHIaSscXeV+65EqzaS4M+OEBjEeCBYxgo2VHroxNkOCeXY96dXLvUrVrblToEXiFaQKBZq9yle3L0kaU2EIx1p3PDcxQYaVYYTTSbmbappgMsID2rFU4JjqIJumnqBjq/RRJJV9wqCp+nsjw7HW4zi0k3lKPe/l4n9eJzXReZAxkaSGCjI7FKUcGYnyClCfKUoMH1uCiWI2KyJDrDAxtqi8BG/+y4vEr9cuau7tabVxWbRRgkM4ghPw4AwacANN8IGAgmd4hTfnyXlx3p2P2eiSU+wcwB84nz9J35Hl</latexit><latexit sha1_base64="S/xPvMskHXI1CRHpwRrWy4JlwpQ=">AAAB9HicbVBNSwMxFHzrZ61fVY9egkXwVHaLoF6k4EGPFVxbaNeSTbNtaDZZkqxSlv4PLx5UvPpjvPlvzLZ70NaBwDDzHm8yYcKZNq777Swtr6yurZc2yptb2zu7lb39ey1TRahPJJeqHWJNORPUN8xw2k4UxXHIaSscXeV+65EqzaS4M+OEBjEeCBYxgo2VHroxNkOCeXY96dXLvUrVrblToEXiFaQKBZq9yle3L0kaU2EIx1p3PDcxQYaVYYTTSbmbappgMsID2rFU4JjqIJumnqBjq/RRJJV9wqCp+nsjw7HW4zi0k3lKPe/l4n9eJzXReZAxkaSGCjI7FKUcGYnyClCfKUoMH1uCiWI2KyJDrDAxtqi8BG/+y4vEr9cuau7tabVxWbRRgkM4ghPw4AwacANN8IGAgmd4hTfnyXlx3p2P2eiSU+wcwB84nz9J35Hl</latexit>

GN
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FIGURE 1.2: TR decomposition.

follow:
X =� G(1),G(2), · · · , G(N) �, (1.1)

where for n = 1, · · · , N, G(n) ∈ RRn−1×In×Rn , R0 = RN = 1, and the notation � · �
is the operation to transform the core tensors to the approximated tensor. G(1) ∈ RI1×R1

and G(N) ∈ RRN−1×IN are two matrices in the first and the last positions. The sequence
R0, R1, · · · , RN is named TT-rank which limits the size of every core tensor. Furthermore,
the (i1, i2, · · · , iN)th element of tensor X can be represented by the multiple product of the
corresponding mode-2 slices of the core tensors as:

xi1i2···iN =
N

∏
n=1

G(n)
in

, (1.2)

where g(1)
i1

, G(1)
i1

, · · · , g(N)
iN

is the sequence of slices from each core tensor. For n =

1, 2, · · · , N, G(n)
in
∈ RRn−1×Rn is the mode-2 slice extracted from G(n) according to each

mode of the element index of xi1i2···iN . g(1)
i1
∈ RR1 and g(N)

iN
∈ RRN−1 are extracted from first

core tensor and last core tensor, they are considered as two order-one matrices for overall
expression convenience.

1.3.2 Tensor ring decomposition

In recent years, the concept of tensor networks has been proposed and has become a powerful
and promising aspect of tensor methodology [33, 34]. One of the most recent and popular
tensor networks, named the matrix product state/tensor-train (MPS/TT), is studied across
disciplines owing to its super compression and computational efficiency properties [11, 29].
For a tensor of N-dimensions, the most significant property of TT decomposition is that
the space complexity will not grow exponentially with N, thus providing a natural remedy
for the “curse of dimensionality”, while the number of parameters of Tucker decomposition
is exponential in N. Although the CP decomposition is a highly compact representation
which has the desirable property of being linear in N, it has difficulties in finding the optimal
latent tensor factors. To address these issues, recent studies propose a generalization of TT
decomposition, termed the tensor ring (TR) decomposition, in order to relax the rank constraint
of TT, thus offering an enhanced representation ability, latent factors permutation flexibility
(i.e. tensor permutation is directly related to the permutation of tensor factors) and structure
information interpretability (i.e. each tensor factor can represent a specific feature of original
tensor) [18, 35].

TRD is a more general decomposition than TT decomposition. It represents a high-order
tensor by circular multilinear products over a sequence of core tensors (i.e., TR factors). The
diagram of TRD is shown in Figure 1.2. All of the TR factors are 3rd-order tensors, which
are denoted by {Gn}N

n=1, Gn ∈ RRn×In×Rn+1 , n = 1, . . . , N. In the same way as the TT
decomposition, the TR decomposition linearly scales to the order of the tensor, thus it can
overcome the “curse of dimensionality”. R1, R2, . . . , RN denotes the TR-rank which controls
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the model complexity of TR decomposition. Compared to the TT decomposition, the TR
decomposition relaxes the rank constraint on the first and the last core tensors to R1 = RN+1,
while the original constraint on TT is rather stringent, i.e., R1 = RN+1 = 1. TR applies trace
operation and all the TR factors are constrained to be third-order equivalently. In this case,
TR can be considered as a linear combination of TT and thus it offers a more powerful and
generalized representation ability than TT. The element-wise relation and global relation of
the TR decomposition and the tensor is given by equations (1.3) and (1.4):

X (i1, i2, . . . , iN) = Trace

{
N

∏
n=1

Gn(in)

}
, (1.3)

X<n> = Gn,(2)(G 6=n,<2>)
T, (1.4)

where Trace{·} is the matrix trace operator, Gn(in) ∈ RRn×Rn+1 is the inth mode-2 slice
of Gn, which also can be denoted by Gn(:, in, :) according to Matlab syntax. G 6=n ∈
RRn+1×∏N

i=1,i 6=n Ii×Rn is a subchain tensor by merging all TR factors except the nth core tensor,
see more details in [35].

1.4 Tensor completion

In practical situations, data missing is ubiquitous due to the error and the noise in data
collecting process, resulting in the generation of data outliers and unwanted data entries.
Generally, the lynchpin of tensor completion is to find the correlations between the missing
entries and the observed entries. Tensor completion is to recover an incomplete tensor from the
partially observed entries of the tensor, which has been applied in various completion problems
such as image/video completion [19, 36], compressed sensing [22], link prediction [37],
recommendation system [20], to name a few. There exist strong theoretical support and
various solutions for solving the low-rank problem of matrices, and the most studied convex
relaxation of low-rank matrix is nuclear norm [38]. However, determining the rank of a tensor
is an NP-hard problem [23]. To solve this problem, there are mainly two types of tensor
completion methods: (i) rank-minimization-based approach and (ii) tensor-decomposition-
based approach.

1.4.1 Rank-minimization-based completion

The first approach formulates the convex surrogate models of low-rank tensors. The low-rank
tensor completion problem can be formulated as:

min
X

Rank(X ), s.t. PΩ(X ) = PΩ(T ), (1.5)

and the model can be written in a unconstrained form by:

min
X

Rank(X ) +
1
λ
‖PΩ(X )− PΩ(T )‖2

F, (1.6)

where X is the low-rank approximation tensor, Rank(·) is a rank regularizer, PΩ(T ) denotes
all the observed entries w.r.t. the set of indices of observed entries represented by Ω, and ‖ · ‖F
is the Frobenius norm. For the low-rank tensor completion problem, determining the rank of a
tensor is an NP-hard problem. Work in [19] and [26] extends the concept of low-rank matrix
completion and defines the tensor rank as the sum of the rank of mode-n matricization of the
tensor. This surrogate is named “overlapped” model, and it simultaneously regularizes all the
mode-n matricizations of a tensor into low-rankness by nuclear norm. For an N-dimension
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incomplete tensor T , the low-rank tensor completion model is formulated by:

min
X ∑N

n=1 ‖X(n)‖∗, s.t. PΩ(X ) = PΩ(T ), (1.7)

where X is the low-rank approximation tensor, ‖ · ‖∗ is the nuclear norm, and PΩ(T ) denotes
the entries w.r.t. the set of indices of observed entries represented by Ω. The missing
entries of T is approximated by X and the rank of the completed tensor X is determined
automatically. Moreover, based on different definitions of tensor rank, various nuclear norm
regularized algorithms have been proposed [19, 27, 39, 40]. Three algorithms based on nuclear
norm minimization are proposed in [19], i.e., SiLRTC, FaLRTC, and HaLRTC. They extend
the nuclear norm regularization for matrix completion to tensor completion by minimizing
the Tucker rank of the incomplete tensor. In [41], Tucker low-n-rank tensor completion
(TLnR) is proposed, and the experiments show better results than the traditional nuclear norm
minimization methods.

Rank minimization based methods do not need to specify the rank of the employed tensor
decompositions beforehand, and the rank of the recovered tensor will be automatically learned
from the limited observations. However, these algorithms face multiple large-scale singular
value decomposition (SVD) operations on the 2D unfoldings of the tensor when employing the
nuclear norm and numerous hyper-parameter tuning, which in turn leads to high computational
cost and low efficiency. To solve this problem, we provide methods in Chapter 3, 4.

1.4.2 Tensor-decomposition-based completion

Different from rank-minimization-based approach, the tensor-decomposition-based approach
do not find the low-rank tensor directly, instead, it firstly finds the tensor decomposition
of the incomplete data by observed entries, then the latent factors are used to predict the
missing entries. This kind of approach sets the rank of tensor decomposition manually, and
the optimization model is given below:

min
{G(n)}N

n=1

‖W ∗ (T −X ({G(n)}N
n=1)‖2

F, (1.8)

where ‖ · ‖F is the Frobenius norm, {G(n)}N
n=1 is the sequence of latent factors under consid-

eration (here [G] stands for the factors of arbitrary decomposition) and X ({G(n)}N
n=1) is the

tensor approximated by the latent factors. W is a weight tensor which is the same size as the
incomplete tensor, and every entry of W meets:

wi1i2···iN =

{
0 if yi1i2···iN is a missing entry,
1 if yi1i2···iN is an observed entry.

(1.9)

Many completion algorithms have been proposed based on alternating least squares (ALS)
method [42, 43], gradient-based method [5, 44], to mention but a few. Moreover, based on
different tensor decomposition models, various tensor-decomposition-base approaches have
been proposed, e.g., CP weighted optimization [5], weighted tucker [41] and TT weighted
optimization [44]. All the methods aim to find the specific structure of the incomplete data
by different kinds of tensor decompositions. However, CP, Tucker and TT based WOPT
algorithms apply tensor decomposition models which lack of flexibility, this may lead to bad
convergence when considering different kinds of data. TR decomposition model is much more
flexible, so TR-based WOPT method can get a better approximation of incomplete data, thus
provide better completion results.
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Though ALS and gradient-based algorithms are free from burdensome hyper-parameter
tuning, the performance of these algorithms is rather sensitive to model selection, i.e., rank
selection of the tensor decomposition. Moreover, since the optimal rank is generally data-
dependent, it is very challenging to specify the optimal rank beforehand. This is especially
the case for Tucker, TT, and TR decompositions, for which the rank is defined as a vector;
it is therefore impossible to find the optimal ranks by cross-validation due to the immense
possibilities. To solve this problem, we provide a method in Chapter 3.
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Chapter 2

High-order Tensor Completion by
Tensor Ring Decomposition

Based on different tensor decomposition models, various tensor-decomposition-based tensor
completion methods have been proposed, e.g., CP weighted optimization [5], weighted
tucker [41] and TT weighted optimization [44]. All the methods aim to find the specific
structure of the incomplete data by different kinds of tensor decompositions. However, CP,
Tucker and TT based WOPT algorithms apply tensor decomposition models which lack
flexibility, this may lead to bad convergence when considering different kinds of data. TRD
model is much more flexible and high performance in many applications, so TR-based WOPT
method can get a better approximation of incomplete data, thus provide better completion
results. In this work, we formulate the tensor ring weighted optimization (TR-WOPT) scheme
which can be applied to tensor completion.

2.1 Tensor ring weighted optimization

2.1.1 Model formulation

Based on TRD, we propose the tensor ring weighted optimization (TR-WOPT) algorithm
which is illustrated as follows. Define T ∈ RI1×I2×···×IN is the incomplete tensor with
missing entries filled with zero, X ({G(n)}N

n=1) is the tensor approximated by the core tensors
of TR decomposition. The proposed algorithm is based on tensor-decomposition-based
approach and the model is described in (1.8). The model is to find the core tensors of
TR decomposition of an incomplete tensor, then use the TR core tensors to approximate
the missing entries. To minimize the model by gradient-based algorithm, the problem is
reformulated by the below optimization model:

f (G(1), . . . ,G(n)) =
1
2

∥∥∥W ∗ (T −X ({G(n)}N
n=1))

∥∥∥
2

F
. (2.1)

This is an objective function of an optimization problem and all the core tensors are the
optimization objective. From [18], the relation between the approximated tensor X and the
core tensors {G(n)}N

n=1 can be deduced as the following equation:

X<n> = G(n)
(2) (G

( 6=n)
<2> )T, (2.2)

where G( 6=n) ∈ RRn+1×∏N
i=1,i 6=n Ii×Rn is a subchain tensor by merging all core tensors except

the nth core tensor, i.e., G( 6=n) := X ({G(n+1), . . . ,G(n),G(1), . . . ,G(n−1)}). Because each
of the core tensors is independent, we can optimize them independently. The optimization
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Algorithm 1 Tensor ring weighted optimization (TR-WOPT)

input: incomplete tensor T , weight tensor W , TR-rank R1, . . . , RN , and randomly initial-
ized {G(n)}N

n=1.
repeat

for n = 1 to N do
Compute gradients of {G(n)}N

n=1 according to (2.4).
end for
Update {G(n)}N

n=1 by gradient descent algorithm.
until Stopping condition is satisfied
Y = PΩ(T ) + PΩ̄(X ({G(n)}N

n=1))
output: completed tensor Y .

function w.r.t. G(n) can be written as:

f (G(n)) =
1
2

∥∥∥W<n> ∗ (T<n> −G(n)
(2) (G

( 6=n)
<2> )T)

∥∥∥
2

F
, (2.3)

where we consider other tensor cores remain fixed.

2.1.2 Gradient-based solving scheme

Next, we can deduce the partial derivatives of the objective function (2.3) w.r.t. G(n)
(2) as follow:

∂ f

∂G(n)
(2)

= (W<n> ∗ (G(n)
(2) (G

( 6=n)
<2> )T − T<n>)G

( 6=n)
<2> . (2.4)

For n = 1, ..., N, the gradients of all the core tensors can be obtained, and the core tensors
can be optimized by any gradient-based optimization algorithms. Furthermore, if there is no
missing entries in tensor data, our algorithm can also be used as a TR decomposition algorithm.
The whole process of applying TR-WOPT to tensor completion is listed in Algorithm 1.

For optimization method of TR-WOPT, in order to have a clear comparison with CP-
WOPT which is also based on gradient descent methods, we adopt the same optimization
method as paper [5]. The paper applies nonlinear conjugate gradient (NCG) with Hestenes-
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image modes. The 2D representation of the image modes cannot fully exploit the correlation
and local structure of the data, so we propose the VDT method to strengthen the local structure
correlation of visual data. The VDT method operates as follows: if the first two orders of a
visual data tensor is U ×V and can be reshaped to u1 × u2 × · · · × ul × v1 × v2 × · · · × vl ,
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can efficiently exploit the structure information of visual data and achieve better low-rank
representation. After the tensorized data is calculated by the completion algorithms, reverse
operation of VDT is conducted to get the original image structure. The diagrams to explain
the procedure of VDT are shown in Figure 2.1.
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5. Tensor ring low-rank factors (TRLRF)
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(n)
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G<n
im
n

)T .

7: End

8: Update corresponding G
(n)
im
n

by gradient descent method.

9: End while

10: Output: G(1), G(2), · · · , G(N).

3.4. Computational Complexity

For tensor X 2 RI1⇥I2⇥···⇥IN with number of observed entries M , we assume

all I1, I2, · · · , IN is equal to I, and r1 = r2 = · · · = rN�1 = r. According equa-

tion 10, 20 and 15,we list the computational complexity of our three algorithms

for every iteration in table 1. Though the time complexity will exponentially

increase by data dimensions, STTOPT and TTSGD is free from dimensionality

so they can deal with large-scale data. Besides, TTSGD uses the least time

complexity and space complexity.

Table 1: Computational complexity of TTWOPT, STTOPT, TTSGD for every iteration

Algorithm Time complexity Space complexity

TTWOPT O(rN�1IN�1) O(IN + r2IN�1)

STTOPT O(MrN�1) O(MIr)

TTSGD O(rN�1) O(Ir)

i2 = 1i2 = 2i2 = 3i2 = 4

4. Experiments

One advantage of gradient-based optimization is that we do not need too

tune so many hyper parameters, we can easily get any wanted accuracy within
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FIGURE 2.1: Illustration of the proposed VDT method. Figure (a) is the
example of applying the VDT method on a I × I × C tensor. Figure (b)
and Figure (c) shows the example of the VDT operation on a 256× 256× 3

image.

2.2.2 Validation of VDT on benchmark images

To verify the effectiveness of our VDT method, we choose a benchmark image “Lena” with 0.9
missing rate. We compare the performance of the five algorithms (TR-WOPT, CP-WOPT [5],
FBCP [36], HaLRTC [19] and TLnR [41]) under three different data structures: order-3 tensor,
order-9 tensor without VDT, order-9 tensor generated by VDT method. The order-3 tensor
applies original image data structure of size 256× 256× 3. The order-9 tensor without VDT
is generated by directly reshaping data to the size 4× 4× 4× 4× 4× 4× 4× 4× 3. For
order-9 tensor with VDT method, firstly the original data is reshaped to a order-seventeen
tensor of size 2× 2× 2× 2× 2× 2× 2× 2× 2× 2× 2× 2× 2× 2× 2× 2× 3 and then
it is permuted according to the order of {1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17}. Finally
we reshape the tensor to a nine-order tensor of size 4× 4× 4× 4× 4× 4× 4× 4× 3. This
nine-order tensor with VDT is considered to be a better structure of the image data. The
first order of the nine way tensor contains the data of a 2× 2 pixel block of the image and
the following orders of the tensor describe the expanding pixel blocks of the image. Most
of the parameter settings follow the previous synthetic data experiments, and we tune the
TR-rank, CP-rank and Tucker-rank of the corresponding algorithms to try to obtain better
performance. Figure 2.2 shows the visual results of the five algorithms under the three different
data structure. We can see that in the three-order tensor case, the results among the algorithms
are similar. However, for nine-order cases, other algorithms fail the completion task while
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TR-WOPT performs well. Furthermore, when the image is transformed to nine-order tensor
by VDT method, we see the distinct improvement of our algorithm.

 

3D tensor 

9D tensor by  
VDT

tensorization

TT-WOPT TT-SGD CP-WOPT FBCP TLnRHaLRTC

9D tensor by  
direct

tensorization

TT-SGD CP-WOPT FBCP HaLRTC TLnRTT-WOPTMissingOriginal

 

3D tensor 

9D tensor by  
VDT  

tensorization

TR-WOPT TT-SGD CP-WOPT FBCP TLnRHaLRTC

9D tensor by  
direct  

tensorization

TT-SGD CP-WOPT FBCP HaLRTC TLnRTT-WOPTMissingOriginal

FIGURE 2.2: Visual results for completion of the 0.9 random missing “Lena”
image under five algorithms. The first row applies original order-three tensor
data, the second row applies order-nine tensor data without VDT method, and

the third row applies order-nine tensor data generated by VDT method.

2.3 Irregular missing experiments of benchmark images

For performance evaluation, the relative square error (RSE) and peak signal-to-noise ratio
(PSNR) are adopted for the evaluation of the completion results. RSE is calculated by
RSE = ‖T real −Y‖F/‖T real‖F, where T real is the real tensor with full observations, Y
is the completed tensor. PSNR is obtained by PSNR = 10 log10(2552/MSE), where MSE
is deduced by MSE = ‖X −Y‖2

F/num(X ), and num(·) denotes the total number of the
elements of the tensor. It should be noted that all the experiments in this thesis are implemented
on Matlab software and all the computations are conducted by using a Mac computer with
Intel Core i7 and 64GB DDR3 memory.

The experiments consider four different irregular missing situations, i.e., removing images
by the shapes of the alphabet, missing by scratching, the block missing and the line missing.
Moreover, random missing cases with high missing rates are also considered. Because all the
tensor completion algorithms perform well in low missing rate situations, we only test high
random missing rate situations, i.e., missing rates are 0.8 and 0.9. We tune ranks and hyper-
parameters of each algorithm and record the best completion results of each algorithm. Figure
2.3 and Table 2.1 show the visual and numerical completion results of the five algorithms
respectively. From the results we can see, TR-WOPT performs better than TT-WOPT, CP-
WOPT, and FBCP in all the tested situations. However, FaLRTC shows slightly better
performance than TR-WOPT in the images of random missing (missing rate is 0.8). This
is because the images own distinct low-rank property and the missing rate is relatively low,
which is easy for rank-minimization-based algorithms to catch the low-rank structures of
the tensor. However, when the missing rate of data is higher and most of the information is
missing, FaLRTC cannot find the low-rank structure of the data, so the performance of random
missing rate 0.9 of the algorithm drops quickly.
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FIGURE 2.3: Visual completion results of five algorithms under six image
missing situations. The first column and the second column are original
images and images with specified missing patterns respectively. The following
columns are the completion results of the five algorithms respectively. The
first row to the fourth row are the completion results of alphabet missing,
scratch missing, block missing and line missing respectively. The fifth row to
the last row are random missing completion results of missing rates 0.8 and

0.9 respectively.

TABLE 2.1: Numerical completion results of five algorithms under six image
missing situations.

TR-WOPT TT-WOPT CP-WOPT FBCP FaLRTC

Alphabet
RSE

PSNR
0.0227
37.17

0.0282
35.30

0.0901
25.62

0.0397
32.32

0.0313
34.40

Scratch
RSE

PSNR
0.105
25.93

0.119
23.83

0.231
18.08

0.114
24.20

0.106
24.84

Block
RSE

PSNR
0.0891
26.21

0.124
23.31

0.176
20.32

0.115
24.01

0.104
24.84

Line
RSE

PSNR
0.101
24.81

0.115
23.70

0.187
19.46

0.116
23.61

0.112
24.72

0.8
RSE

PSNR
0.128
23.59

0.142
22.71

0.332
15.32

0.101
25.70

0.0839
27.27

0.9
RSE

PSNR
0.125
19.97

0.134
19.35

0.414
9.562

0.175
17.01

0.146
18.62

2.4 Conclusion

Based on low-rank TRD, in this work, we proposed a new tensor completion algorithm
named tensor-ring weighted optimization (TR-WOPT). The TR factors are optimized by
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the gradient-based method and used to predict the missing entries of the incomplete tensors.
The experiments on benchmark images and the results show that TR-WOPT outperforms
the related tensor completion algorithms in many situations. In addition, we also find that
tensorizing lower-dimension tensor to a proper higher-dimension tensor can give a better
data structure and thus improving the performance of our algorithm. Good performance of
TR-WOPT in various completion tasks shows the high representation ability and flexibility of
TR decomposition. It is also shown that the gradient-based algorithm is promising to optimize
tensor decompositions. Furthermore, our method needs the TR-rank to be specified before
the experiment, which is time-consuming to find the best TR-rank for the data. In our future
work, we will study how to determine TR-ranks automatically.



15

Chapter 3

Rank-robust Tensor Ring
Decomposition and Completion

Based on the assumption that the underlying tensor is in TR structure, several tensor com-
pletion methods have been proposed and show high performance and efficiency [43, 50, 51].
However, the performance of TR-based completion methods is very sensitive to model se-
lection. Due to the interdependence between the optimal rank of the decomposition model,
the different data structure and the missing settings, it is rather challenging to determine the
optimal rank for the data approximation. Moreover, the above algorithms have to manually
tune the TR-rank to get the optimal solution which is time-consuming and inefficient. Finding
the optimal TR-rank by cross-validation is not practical even for 3rd-order tensors, as TRD is
defined in terms of multi-linear rank (i.e., the number of the undetermined TR-rank equals to
the tensor order).

Furthermore, other tensor completion methods with automatic rank selection are difficult
to be extended to TR-based method or less efficient. [6] proposes an algorithm using Bayesian
inference which can tune the CP-rank. Nevertheless, the multi-linear rank of TR makes it
difficult to extend Bayesian methods to TRD. Moreover, the greedy rank-tuning algorithms
based on CP decomposition [52] and Tucker decomposition [53] exhibit poor efficiency when
facing large-scale tensor and multi-linear rank model. In consideration of the problem, this
chapter proposes two novel methods which can effectively alleviate the rank selection problem
of TRD.

3.1 The rank of tensor ring decomposition

In this subsection, we first prove that the rank of the unfolded tensor is upper bounded by
the TR-rank. Then, we prove that the low-rank constraint on TR factors will impose more
low-rank constraint on the underlying tensor. For all the tensor decomposition models, model
rank is the most significant parameter for tensor decomposition, as it controls the model
complexity which is related to the approximation performance.

In recent studies, the rank of the tensor decomposition is always corresponding to a
kind of low-rank structure of the underlying tensor. For instance, CP decomposition is to
decompose the tensor into R rank-1 tensors. In this way, CP decomposition is to find the
rank-1 latent components of the tensor [2]. However, directly minimizing CP-rank is an
NP-hard problem, and all the existing CP-based algorithms are decomposition-based. For
Tucker decomposition, the Tucker-rank is related to the rank of the mode-n unfoldings of the
underlying tensor [41] (i.e.., Rank(X ) := ∑N

n=1 ‖X(n)‖∗). Moreover, TT-rank is related to the
rank of the n-unfoldings of the tensor [49] (i.e., Rank(X ) := ∑N

n=1 ‖X[n]‖∗). So, minimizing
Tucker-rank and TT-rank can be cast into solving a series of low-rank matrix completion
problems. For TR decomposition, to the best of our knowledge, there are no studies about
the relationship between the TR-rank and the underlying tensor low-rank structure. Next, we
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prove that all the n-unfoldings of the tensor after the tensor circular permutation are bounded
by the TR rank. We prove that all the tensor circular permutation is bounded by TR-rank by
the following theorem.

Theorem 1. If the tensor X ∈ RI1×···×IN is in TR-format of rank R1, R2, . . . , RN , then the
rank of X←−c ,[n] is bounded by TR-rank as:

Rank(X←−c ,[n]) ≤ RcRt+1, (3.1)

where

t =

{
c + n, n ≤ N − c;
N − n + 1, otherwise.

(3.2)

Proof. Assume the TR factors of a tensor X is {G(n)}N
n=1 ∈ RRn×In×Rn+1 . By applying the

property of circular permutation invariance of TR decomposition [18] (Theorem 2.1), X←−c ∈
RIc+1×···×IN×I1×···×Ic can be decomposed by the TR-factors of {G(c+1), · · · ,G(N),G(1), · · · ,G(c)},
and for all the element in X , we have

X←−c (i1, . . . , iN) = Trace(
N

∏
n=c+1

G(n)
in

c

∏
n=1

G(n)
in

). (3.3)

By merging {G(c+1), . . . ,G(t)} and {G(t+1) . . . ,G(c)} respectively, we have G≤n,←−c and
G>n,←−c . and obtain the following equation:

X←−c ,[n] = G≤n,←−c
(2) (G>n,←−c

<2> )>, (3.4)

where G≤n,←−c ∈ RRc×Ic+1···It+1×Rt+1 and G(t+1,...,c) ∈ RRt+1×It+1···Ic×Rc . This indicates that
there exist a matrix decomposition for X←−c ,[n] of rank RcRt+1, so we have Rank(X←−c ,[n]) ≤
RcRt+1.

Theorem 1 proves that the unfoldings of the arbitrary circular permuted tensor have the
rank upper bounds which are constrained by TR-rank. Compared to the Tucker-rank and
TT-rank, which are the bound of the other kinds of tensor unfoldings, the TR-rank can bound
more tensor unfolding structures, thus exploiting more low-rank structures of the underlying
tensor. From Theorem 1, we know that the rank of the unfolded tensor is an “under-estimator”
of the product of TR-rank. Therefore, it can be inferred that unbalanced values of the unfolding
rank may lead to unbalanced TR-rank. Meanwhile, we can also infer that the regularization
on the TR-rank is equivalent to minimizing the rank of the tensor under unfoldings.

Next, we deduce the rank of the TR factors and the rank of the tensor unfoldings by the
below theorem.

Theorem 2. Given an N-th order tensor X ∈ RI1×I2×···×IN which is in TR-format with the
TR-rank [R1, R2, . . . , RN ]

> of which the TR factors are denoted by {G(n)}N
n=1 ∈ RRn×In×Rn+1 ,

then the following inequality holds for all n = 1, . . . , N:

Rank(G(n)
(2) ) ≥ Rank(X(n)). (3.5)

Proof. For the n-th TR factor G(n), according to the work in [18], we have:

X<n> = G(n)
(2) (G

( 6=n)
<2> )>, (3.6)
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where G( 6=n) ∈ RRn+1×∏N
i=1,i 6=n Ii×Rn is a subchain tensor generated by merging all but the n-th

TR factor. Hence, the relationship between the rank of the TR factors mode-2 unfoldings and
the rank of the tensor unfoldings satisfies:

Rank(X<n>) ≤ min{Rank(G(n)
(2) ), Rank(G( 6=n)

<n>)}

≤ Rank(G(n)
(2) ).

(3.7)

The proof is completed by

Rank(X<n>) = Rank(X(n)) ≤ Rank(G(n)
(2) ). (3.8)

Theorem 2 proves the relation between the rank of tensor unfoldings and the rank of the
TR factors. The rank of mode-n unfolding of the tensor X is upper bounded by the rank of the
dimension-mode unfolding of the corresponding core tensor G(n), which allows us to impose
a low-rank constraint on [G] to explore the more low-rank structure of the underlying tensor.

3.2 Tensor ring low-rank factors

3.2.1 Model formulation

We impose low-rank regularizations on each of the TR factors and so that our basic tensor
completion model is formulated as follow:

min
[G],X

N

∑
n=1

Rank(G(n)) +
λ

2
‖X −Ψ([G])‖2

F,

s.t. PΩ(X ) = PΩ(T ).

(3.9)

According to theorem 1, we consider to impose nuclear norm regularizations on the two
rank-modes of the TR factors, i.e., the unfoldings of the TR factors along mode-1 and mode-3,
which can be expressed by ∑N

n=1 ‖G(n)
(1)‖∗+∑N

n=1 ‖G(n)
(3)‖∗. When the model is optimized,

nuclear norms of the rank-mode unfoldings and the fitting error of the approximated tensor
are minimized simultaneously, resulting in the initial TR-rank becoming the upper bound of
the real TR-rank of the tensor, thus equipping our model with robustness to rank selection.
Moreover, by theorem 2, we continue to impose nuclear norm regularization on the dimension-
mode of the TR factors (i.e., ‖G(n)

(2)‖∗), to explore more low-rank structure of the underlying
tensor. Finally, by imposing overlapped nuclear norm on TR factors, the tensor ring low-rank
factors (TRLRF) model can be expressed as:

min
[G],X

N

∑
n=1

3

∑
i=1
‖G(n)

(i) ‖∗ +
λ

2
‖X −Ψ([G])‖2

F,

s.t. PΩ(X ) = PΩ(T ),

(3.10)

where the optimization objectives are the recovered underlying tensor X and the TR factors
[G], λ > 0 is the tuning parameter.

Traditional rank-minimization-based tensor completion methods perform nuclear norm
regularization of multiple matrices generated by tensor unfoldings, and thus suffering from
high computational cost of large-scale SVD operations in every iteration. By the nuclear norm
regularizations on the TR factors, we can largely decrease the computational complexity of
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our model compared to the algorithms which are based on model (1.7). Our TRLRF model
has two distinctive advantages. Firstly, the low-rank assumption is placed on tensor factors
instead of on the original tensor, this greatly reduces the computational complexity of the
SVD operation. Secondly, low-rankness of tensor factors can enhance the robustness to rank
selection, which can alleviate the burden of searching for optimal TR-rank and reduce the
computational cost in the implementation.

3.2.2 ADMM solving scheme

The alternating direction method of multipliers (ADMM) [54] is the most commonly-used and
efficient algorithm to solve constrained optimization problems. Due to the non-smoothness
property of the nuclear norm regularizers of our models, the conventional gradient-descent-
based algorithms usually lead to slow convergence rate (sub-linearly), so we apply the ADMM
to solve our models. As shown in existing studies [19, 40], we can utilize ADMM to achieve
more efficient solving schemes of our models. To solve the model in (3.10) by ADMM
scheme, because the variables of TRLRF model are inter-dependent, we impose auxiliary
variables to simplify the optimization. Thus, the TRLRF model can be rewritten as

min
[M],[G],X

N

∑
n=1

3

∑
i=1
‖M(n,i)

(i) ‖∗ +
λ

2
‖X −Ψ([G])‖2

F,

s.t. M(n,i)
(i) = G(n)

(i) , n = 1, . . . , N, i = 1, 2, 3,

PΩ(X ) = PΩ(T ),

(3.11)

where [M] := {M(n,i)}N,3
n=1,i=1 are the auxiliary variables of [G]. By merging the additional

equal constraints of the auxiliary variables into the Lagrangian equation, the augmented
Lagrangian function of TRLRF model becomes

L ([G],X , [M], [Y ])

=
N

∑
n=1

3

∑
i=1

(
‖M(n,i)

(i) ‖∗+ < Y (n,i),M(n,i) − G(n) >

+
µ

2
‖M(n,i) − G(n)‖2

F
)
+

λ

2
‖X −Ψ([G])‖2

F,

s.t. PΩ(X ) = PΩ(T ),

(3.12)

where [Y ] := {Y (n,i)}N,3
n=1,i=1 are the Lagrangian multipliers, and µ > 0 is a penalty

parameter. For n = 1, . . . , N, i = 1, 2, 3, G(n), M(n,i) and Y (n,i) are each independent, so
we can update them by the updating scheme below.
Update G(n). By using (3.23), the augmented Lagrangian function w.r.t. G(n) can be
simplified as

L(G(n)) =
3

∑
i=1

µ

2

∥∥∥M(n,i) − G(n) +
1
µ
Y (n,i)

∥∥∥
2

F

+
λ

2

∥∥X −Ψ([G])
∥∥2

F + CG ,

(3.13)
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where the constant CG consists of other parts of the Lagrangian function which is irrelevant to
updating G(n). This is a least squares problem, so for n = 1, . . . , N, G(n) can be updated by

G(n)
+ = fold(2)

(( 3

∑
i=1

(µM(n,i)
(2) + Y(n,i)

(2) )

+ λX<n>G( 6=n)
<2>

)(
λG( 6=n),>

<2> G( 6=n)
<2> + 3µI

)−1
)

,

(3.14)

where I ∈ RR2
n×R2

n denotes the identity matrix.
Update M(n,i). For i = 1, 2, 3, the augmented Lagrangian functions w.r.t. [M] is expressed
as

L(M(n,i)) =
µ

2

∥∥M(n,i) − G(n) +
1
µ
Y (n,i)∥∥2

F

+
∥∥M(n,i)

(i)

∥∥
∗ + CM.

(3.15)

The above formulation has a closed-form [55], which is given by

M(n,i)
+ = fold(i)

(
D 1

µ

(
G(n)

(i) −
1
µ

Y(n,i)
(i)

))
, (3.16)

where Dβ(·) is the singular value thresholding (SVT) operation, e.g., if USV> is the singular
value decomposition of matrix A, then Dβ(A) = Umax{S− βI, 0}V>.
Update X . The augmented Lagrangian functions w.r.t. X is given by

L(X ) =
λ

2

∥∥X −Ψ([G])
∥∥2

F + CX ,

s.t. PΩ(X ) = PΩ(T ),
(3.17)

which is equivalent to the tensor decomposition based model in (1.6). The expression for X
is updated by inputing the observed values in the corresponding entries, and by approximating
the missing entries by updated TR factors [G] for every iteration, i.e.,

X+ = PΩ(T ) + PΩ̄(Ψ([G])), (3.18)

where Ω̄ is the set of indices of missing entries which is a complement to Ω.
Update Y (n,i). For n = 1, . . . , N and i = 1, 2, 3, the Lagrangian multiplier Y (n,i) is updated
as

Y (n,i)
+ = Y (n,i) + µ

(M(n,i) − G(n)). (3.19)

In addition, the penalty term of the Lagrangian functions L is restricted by µ which is also
updated for every iteration by µ+ = max{ρµ, µmax}, where 1 < ρ < 1.5 is a tuning hyper
parameter.

3.3 Tensor ring latent nuclear norm

3.3.1 Latent nuclear norm

Latent tensor nuclear norm is first proposed in [24], whose form equals the infimum of sum of
a sequence of matrix nuclear norm. Given an N-th order tensor W , its latent nuclear norm is
defined as

‖W‖L = inf
W (1)+W (2)+...+W (N)=W

N

∑
n=1
‖W(n)

(n)‖∗, (3.20)
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where ‖ · ‖∗ denotes the matrix nuclear norm. Compared to the conventional overlapped
tensor nuclear norm [19], the latent model is proved to provide more precise completion
results especially in the unbalanced case of tensor rank [24].

3.3.2 Model formulation

By imposing overlapped nuclear norms on the TRD latent factors, TRLRF can minimize the
TR-rank of each mode of the tensor and explore more low-rank structures. However, when
the low-rank property in each mode of the underlying tensor is unbalanced (which is usually
the case in real-world data), the equal low-rank constraint on each TR factor will become
less efficient. Inspired by the previous study of latent nuclear norm, which is a more flexible
low-rank constraint than overlapped nuclear norm, we employ the norm (3.20) to the factors.
The work in [24] first proposes the “latent” norm model and shows that the mean square error
of a “latent” norm method scales no greater than the “overlapped” norm method. Under the
low-rank regularization of the latent model, the underlying tensor does not need to be low-rank
at every mode. In this respect, we further decompose each TR factor into a sum of latent
components. , i.e. for a given factor G(n) we have

G(n) =
3

∑
i=1

W (n,i). (3.21)

By regularizing the nuclear norm of the mode-i unfoldings of each component, our tensor ring
latent nuclear norm (TRLNN) model is formulated as:

min
[G],X

N

∑
n=1

3

∑
i=1
‖W(n,i)

(i) ‖∗ +
λ

2
‖X −Ψ([G])‖2

F

s.t. PΩ(X ) = PΩ(T ),G(n) =
3

∑
i=1

W (n,i),

n = 1, . . . , N,

(3.22)

Similar to the TRLRF model, the TRLNN is also to optimize the TR factors and the underlying
tensor simultaneously. From the model (3.22), we can see that the rank along different modes
for each TR factor G(n) is independently regularized by different components W (n,i), which
is well suited to the unbalanced rank scenario. The TRLNN model is considered to be a better
setting than TRLRF for a tensor that has unbalanced low-rank structure [24].

3.3.3 ADMM solving scheme

Different from the solving scheme of TRLRF, the TRLNN model dose not need auxiliary
variables. We first merge the equal constraint and formulate the augmented Lagrangian
function as:

L ([G],X , [W ], [Y ])

=
N

∑
n=1

( 3

∑
i=1
‖W(n,i)

(i) ‖∗+ < Y (n),
3

∑
i=1

W (n,i) − G(n) >

+
µ

2
‖

3

∑
i=1

W (n,i) − G(n)‖2
F
)
+

λ

2
‖X −Ψ([G])‖2

F,

s.t. PΩ(X ) = PΩ(T ).

(3.23)

Due to the interdependence of [G], [W ] and [Y ], we provide the updating scheme of these
variables as below.
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Update G(n). To update [G], for n = 1, . . . , N, model (3.23) can be rewritten by:

L(G(n)) =
µ

2

∥∥∥
3

∑
i=1

W (n,i) − G(n) +
1
µ
Y (n)

∥∥∥
2

F

+
λ

2

∥∥X −Ψ([G])
∥∥2

F + CG ,

(3.24)

where CG is the irrelevant part of the augmented Lagrangian function to update G(n) and can
be considered as a constant value. In this way, updating G(n) equals to solving a least squares
problem, so G(n) can be updated by:

G(n)
+ = fold(2)

((
λX<n>G( 6=n)

<2> + µ
3

∑
i=1

W(n,i)
(2)

+ Y(n)
(2)

)(
λG( 6=n),>

<2> G( 6=n)
<2> + µI

)−1
)

,

(3.25)

where I ∈ RR2
n×R2

n is an identity matrix.
Update W (n,i). Similarly, for n = 1, . . . , N, i = 1, 2, 3, in order to update [W ], function
(3.23) can be rewritten by:

L(W (n,i)) =
µ

2

∥∥W (n,i) +
3

∑
j=1,j 6=i

W (n,i) − G(n)

+
1
µ
Y (n,i)∥∥2

F +
∥∥W(n,i)

(i)

∥∥
∗ + CW ,

(3.26)

where CW is the variable which is not related to W (n,i). The formulation has a closed-form
solution, which is given by:

W (n,i)
+ = fold(i)

(
D 1

µ

(
G(n)

(i) −
1
µ

Y(n,i)
(i) −

3

∑
j=1,j 6=i

W (n,i))). (3.27)

Update X . Next, to update X , the augmented Lagrangian function (3.23) can be rewritten
by:

L(X ) =
λ

2

∥∥X −Ψ([G])
∥∥2

F + CX ,

s.t. PΩ(X ) = PΩ(T ),
(3.28)

which is a standard model for TR-based completion, and X can be updated by:

X+ = PΩ(T ) + PΩ̄(Ψ([G])). (3.29)

Update Y (n). Finally, for n = 1, . . . , N, the close-form solution for Lagrangian multipliers
Y (n) is updated by

Y (n)
+ = Y (n) + µ

( 3

∑
i=1

W (n,i) − G(n)). (3.30)
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FIGURE 3.1: Illustration of convergence for TRLRF and TRLNN under
different hyper-parameter choices. A synthetic tensor with TR structure
(size 7× 8× 7× 8 with TR-rank {4,4,4,4}, missing rate 0.5) is tested. The
experiment records the change of the objective function values along the
number of iterations. Panel (a) and panel (b) show the convergence curves of
TRLRF under different TR-rank and λ respectively. The convergence curves

of TRLNN are presented in panel (c) and panel (d).

3.4 Algorithm analysis

3.4.1 Computational complexity

To recover a tensor X ∈ RI×I×···×I , for simplicity, the TR-rank is set equally as R1 = R2 =
· · · = RN = R, then the computational complexity of updating [M] for TRLRF and [W ]
for TRLNN are mainly spent on the SVD calculation, which are O(NIR3 + I2R2) equally.
The complexity of HaLRTC [19] is O(NIN+1) which is much higher than our models as
it conducts the SVD on the whole tensor. Moreover, the main computational complexity
of our algorithms is by updating [G], which are both O(NR2 IN + NR6). It is comparable
to the computational complexity of TRALS [43] which is O(PNR4 IN + NR6) where P
denotes the observation rate. However, the TRALS applies slice-wise update scheme, and our
algorithms apply the factor-wise update scheme which needs much fewer loops to update all
the TR factors. Because of the representation capability of TRD, the high power in R is not
an issue for the complexity of TR-based algorithms. The TR-rank of TR-based algorithms
can always be set as a small value. Another desirable property of TR-rank regularization of
our algorithms is that it can speed up the model selection process in practice, and thus the
computational cost of our algorithm can be greatly reduced.
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Algorithm 2 Solving scheme and parameter settings of TRLRF and TRLNN.

input: incomplete observation PΩ(T ), initial TR-rank {Rn}N
n=1.

initialization: For n = 1, . . . , N, i = 1, 2, 3, random sample G(n) by Gaussian distribution
N ∼ (0, 1), [Y ] = 0, [M] = 0, [W ] = 0, λ = 5, µ0 = 1, µmax = 102, ρ = 1.01,
tol = 10−6, k = 0, kmax = 300.
for k = 1 to kmax do
X last = X .
For TRLRF, update the variables by (3.14), (3.16), (3.18), (3.19)
For TRLRF, update the variables by (3.25), (3.27), (3.29), (3.30).
µ = max(ρµ, µmax)
if ‖X −X last‖F/‖X ‖F < tol then

break
end if

end for
output: completed tensor X and TR factors [G].

3.4.2 Convergence analysis

It should be noted that our TRLRF and TRLNN models are non-convex, so the convergence
to the global minimum cannot be theoretically guaranteed. However, the convergence of our
algorithms can be verified empirically (see experiment details in Figure 3.1). By applying
the synthetic tensor which has the TR structure, we conduct the completion experiment by
our algorithms in different TR-rank and different hyper-parameter λ. Each independent
experiment is conducted 100 times and the average results are shown in the graphs. From
Figure 3.1, we can see that the convergence of our algorithms is fast and stable. Moreover, the
extensive experimental results in the next section also illustrate the stability and effectiveness
of our algorithms.

3.5 Experimental results
1In the experiment section, we firstly testify the rank robustness of our algorithms and the

difference of our algorithms by the simulation experiment. Then by numerous benchmark
and real-world data, we testify the performance of our algorithms in many situations and
compare with the other low-rank approximation algorithms. Moreover, we consider to set
two optimization stopping conditions: (i) maximum number of iterations kmax and (ii) the
difference between two iterations (i.e., ‖X −X last‖F/‖X ‖F) which is thresholded by the
tolerance tol. The implementation process and hyper-parameter selection of TRLRF and
TRLNN are summarized in Algorithm 2.

3.5.1 Synthetic data experiment

In the simulation experiment, three TR-based algorithms (i.e., TRLRF, TRLNN and TRALS
[43]) are used to recover the two incomplete TR-structured tensors which have unbalanced
TR-rank and balanced TR-rank, respectively. The two TR-structured synthetic tensors are
of size 12× 12× 12× 12 with 30% random missing. For the first and the second synthetic
tensors, the real TR-rank are set as {6, 6, 6, 6} and {3, 6, 3, 6}, respectively. From the results
in Figure 3.2 (a), we can see TRALS obtains its best performance when the prescribed TR-rank
equals the real rank of the synthetic tensor but it becomes overfitting when the prescribed

1The Matlab code of our algorithms is available at github.com/yuanlonghao/TRLRF

github.com/yuanlonghao/TRLRF
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FIGURE 3.2: Completion results of three TR-based algorithms with the
increase of the selected TR-rank. Each element of the prescribed TR-rank
is set identically in the algorithms, and the real TR-rank of (a) and (b) are

balance and unbalance, respectively.

TR-rank goes up. On the other hand, the performance of TRLRF and TRLNN are relatively
stable when the prescribed TR-rank is increased over the real-rank. However, in Figure 3.2
(b), when the elements of the real TR-rank is unbalanced, TRLRF becomes less efficient than
TRLNN when the TR-rank is selected as {6, 6, 6, 6}, because only a subset of modes of the
TR-rank needs to be regularized. When the TR-rank continues to increase, the TRLRF and
TRLNN show robustness to the rank-increasing, while the performance of TRALS shows a
sharp decrease due to the overfitting problem.

FIGURE 3.3: The eight benchmark images of size 256× 256× 3.

3.5.2 Benchmark image inpainting

In this section, we adopt eight widely-used benchmark RGB images (Figure 3.3) to validate the
completion performance of our TRLRF and TRLNN. The original images can be considered
as tensors of size 256× 256× 3. The first experiment is conducted to demonstrate the
rank-robustness performance of our algorithms. We treat TRALS and TRWOPT [50] as the
baseline because their TR-rank cannot be tuned automatically. We test these three algorithms
on the “Lena” image with 80% random missing which is the case that the TRD-based
algorithms are prone to be overfitting. The TR-rank for each independent experiment is set
as R = R1 = R2 = R3 and R = {2, 4, 6, 8, 10, 12}. Figure 3.4 shows the visual inpainting
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results of the compared algorithms when the TR-rank increases. We can see that when the
TR-rank is {2, 2, 2}, all the algorithms show distinct underfitting, and when the TR-rank is
{4, 4, 4}, all the algorithms show relatively good results due to the proper rank selection.
However, when the TR-rank continues to increase, TRALS and TRWOPT show performance
decrease due to the overfitting problem while our TRLRF and TRLNN are robust to rank
increase and obtain even higher performance than the low TR-rank cases. The experiment
results are in accordance with the synthetic data experiments in the previous section.

TR-rank(2) TR-rank(4) TR-rank(6) TR-rank(8) TR-rank(10) TR-rank(12)

RSE=0.197 RSE=0.131 RSE=0.111 RSE=0.107 RSE=0.101 RSE=0.101

TRLRF

TRALS

RSE=0.200 RSE=0.129 RSE=0.236 RSE=0.360 RSE=0.502 RSE=0.952

TRWOPT

RSE=0.265RSE=0.176RSE=0.166RSE=0.136RSE=0.129RSE=0.197

RSE=0.199 RSE=0.128 RSE=0.125 RSE=0.113 RSE=0.114 RSE=0.115

TRLNN

FIGURE 3.4: Visual completion results of the reshaped RGB image “Lena”
of size 256× 256× 3.

The next experiment is to testify the inpainting performance of our algorithms com-
pared with other related low-rank-based algorithms. In addition to comparing the TR-based
algorithms, the CPD-based TenALS and FBCP [6], the Tucker-rank minimization based HaL-
RTC [19] and the tensor SVD scheme based t-SVD [56] are also included in our comparison.
We test the eight algorithms on all the eight benchmark images with different missing rates:
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. According to the parameter-tuning suggestions from
each paper, the hyper-parameters are respectively tuned for the compared algorithm to try to
exhibit their best performance.

Figure 3.5 (a) and Figure 3.5 (b) show the average RSE and PSNR results of the eight
images, respectively. The TRLRF and TRLNN show better results than other algorithms in
most of the cases. The completion performance of all the algorithms decreases w.r.t. the
increase of the missing rate. In particular, when the missing rate reaches 0.9 and 0.95, the
performance of most algorithms falls drastically. It should be noted that finding the best
TR-rank to obtain the best completion results is very laborious, and the tuning the optimal
rank for each image in different missing rate is not practical in real applications, especially for
TR-based algorithms which need to tune multilinear rank. However, the rank selection is much
easier for our proposed algorithms because the performance of TRLRF and TRLNN are fairly



26 Chapter 3. Rank-robust Tensor Ring Decomposition and Completion

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1
Missing rate

(a) RSE results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
SE

TRLRF
TRLNN
TRALS
TRWOPT
TenALS
FBCP
HaLRTC
t-SVD

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1
Missing rate

(b) PSNR results

5

10

15

20

25

30

35

PS
N

R

TRLRF
TRLNN
TRALS
TRWOPT
TenALS
FBCP
HaLRTC
t-SVD

FIGURE 3.5: Average completion results of the eight RGB images of size
256× 256× 3 with different missing rate. The smaller RSE values and the

larger PSNR values indicate higher performance.

stable even though the TR-rank is selected from a wide range. As for running time, the average
running time for a single image of each algorithm is 11.2, 10.7, 37.8, 22.9, 14.5, 20.3, 8.5, 13.4
(seconds) respectively, which shows the efficiency of our algorithms.

3.6 Conclusion

In order to solve the rank selection problems of TRD and the computational efficiency problem
most algorithms experience, in this work, we make the virtue of applying both the nuclear
norm regularization and tensor ring decomposition, to formulate a new tensor completion
approach that achieves tensor completion and decomposition simultaneously. We propose
a novel tensor completion approach which exploits the low-rankness of TR latent space by
nuclear norm regularizations. Firstly, the relationship between the rank of the tensor unfoldings
and the TRD factors is theoretically proved, based on which the low-rank surrogate on TR
latent factors is imposed to minimize the TR-rank and explore more low-rank structure of the
underlying tensor. Then, based on two different low-rank regularizations, we develop two
tensor ring completion models termed as tensor ring low-rank factors (TRLRF) and tensor
ring latent nuclear norm (TRLNN) which are suitable for different tensor completion task.
Finally, the alternating direction method of multipliers (ADMM) solving scheme of the two
models is developed. The experimental results of simulation data show that our algorithms are
robust to rank selection. Moreover, the real-world data experiments show high performance
and high efficiency of our algorithms in both low-order and high-order tensor completion
tasks. Furthermore, it is expected that the idea of imposing rank minimization constraint
on tensor latent space can be extended to various tensor decomposition models in order to
develop more efficient and robust algorithms.
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Chapter 4

Max-norm Regularized Tensor Ring
Decomposition

TRD decomposition is one of the most recently proposed and successful tensor decompositions
which is based on the matrix product state (MPS) model [18]. It has been applied to various
fields such as image recovery [43, 57], neural network acceleration [58], data compression
and denoising [59]. However, the existing TR-based methods face two main drawbacks: lack
of scalable algorithm and instability of the decomposition due to the non-convex model and
difficulty of TR-rank selection, which lead to low computational efficiency and performance
deficiency.

In order to solve these problems, in this section, we propose a novel completion method
based on TRD. We define a novel regularizer termed TR-max-norm which is proved to be
able to minimize the TR-rank. Next, we provide an algorithm based on stochastic gradient
descent (SGD) to solve the proposed model. Finally, the algorithm is tested on a large-scale
and highly sparse tensor, and the results show that our algorithm owns faster convergence and
higher performance in comparison with the traditional TR-SGD algorithm.

4.1 Tensor max-norm regularization in TR-format

4.1.1 Matrix max-norm

The traditional low-rank tensor completion model illustrated by equation (1.6) is based on
nuclear norm ‖ · ‖∗ regularization which is the summation of matrix singular values. It needs
to process multiple singular value decompositions (SVD) to update the underlying tensor
or matrix, which is of high computational cost. In consideration of the shortage of nuclear
norm, we introduce an alternative low-rank regularizer of nuclear norm termed as max-norm.
The related studies show that the matrix max-norm is a tighter bound of rank and a better
regularizer for non-uniform missing, compared to nuclear norm [60]. The max-norm is applied
as a convex regularizer for matrix [61]. Similar to the nuclear norm regularizer, max-norm also
promotes the low-rankness of the matrix. The max-norm of a matrix X ∈ RI1×I2 is defined
by:

‖X‖max = inf{‖U‖2
2,∞‖V‖2

2,∞}, s.t. X = UV>, (4.1)

where the infimum of the model is obtained by enumerating all the possible factorizations.
Moreover, if U ∈ RI1×r, the 2-infinity norm of U is calculated by ‖U‖2,∞ = maxI1

i ‖~ui‖2
which denotes the maximum l2-norm of all the rows in U, and the 2-infinity norm of V is
calculated in the same way. The matrix completion model with max-norm regularizer is
formulated by:

min
X,U,V

‖PΩ(T− X)‖2
F, s.t. X = UV>, ‖X‖max ≤ λ, (4.2)
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where T is the partially observed matrix, and λ is the upper bound of the matrix max-norm
which controls the strength of the regularizer. Moreover, by the semidefinite program solver,
the max-norm can be cast into a new form

‖X‖max = min
(U,V):X=UV>

max{‖U‖2
2,∞, ‖V‖2

2,∞}, (4.3)

so the matrix completion model can be written as a decomposition model with regularization
on the decomposition factors:

min
U,V
‖PΩ(T−UV>)‖2

F, s.t. ‖U‖2,∞ ≤ λ, ‖V‖2,∞ ≤ λ. (4.4)

The model is easy to be solved by projected gradient descent methods and it has been applied
to matrix completion problems [62], and it has obtained empirically better results than nuclear
norm regularization in non-uniform data, e.g., collaborative filtering. Moreover, in tensor field,
high performance methods, especially for non-uniform missing data completion is in demand.
So we attempt to apply the idea of max-norm on tensor field, to develop high performance
algorithms.

4.1.2 Tensor ring max-norm

Inspired by the efficient formulation of max-norm-based completion, in this section, we
propose a new optimization model for low-rank tensor approximation based on TRD. We
first prove that the TR-rank bounds the rank of the circular unfoldings of the TR-structured
tensor. Then, we propose a new tensor regularizer in TR-format. Next, we show how the
new regularizer imposes low-rank constraint to minimize the TR-rank. Finally, we provide an
efficient algorithm to solve the TR decomposition problem with incomplete tensor.

We extent the matrix max-norm to tensor by TRD and define a new max-norm regularizer
named TR-max-norm as:

Definition 1. (TR-max-norm) By rearranging the rank-modes of TR factors in to the same
order, the TR-max-norm of tensor is defined as:

‖X ‖TR−max := inf
[G]∈RRn×In×Rn+1

Ψ([G])=X

{
N

∏
n=1
‖G(n)

(2)‖2,∞} (4.5)

It should be noted that when N = 2, X = G(1)
(2)(G

(2)
<n>)

>, we have the same definition
with matrix max-norm if the matrix is in TR format. Next, we provide the relationship between
the matrix max-norm of tensor circular unfoldings and the tensor TR-max-norm by the below
theorem:

Theorem 3. If X ∈ RI1×···×IN can be decomposed into TR factors G(1), . . . ,G(N), then for
∀c, ∀n we have:

‖X←−c ,[n]‖max ≤ ‖X ‖TR−max. (4.6)

Proof. By the definition of matrix max-norm, we have:

‖X←−c ,[n]‖max = min
X←−c ,[n]=G≤n,←−c

(2) (G>n,←−c
<2> )>

max{‖G≤n,←−c
(2) ‖2

2,∞, ‖G>n,←−c
<2> ‖2

2,∞}, (4.7)

Moreover, for n = 1, . . . , N, in ∈ {1, 2, . . . , N}, when we enumerate all the combina-
tions of the index to obtain the 2, ∞-norm of the two merged TR factors, ∃ ‖G≤n,←−c

(2) ‖2
2,∞ =
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‖∏t
n=c+1 G(n)

in
‖2

F and ‖G>n,←−c
<2> ‖2

2,∞ = ‖∏c
n=t+1 G(n)

in
‖2

F, where By Cauchy-Schwarz in-

equality, we have ‖G≤n,←−c
(2) ‖2

2,∞ ≤ ∏t
n=c+1 ‖G(n)

in
‖2

F and ‖G>n,←−c
<2> ‖2

2,∞ ≤ ∏c
n=t+1 ‖G(n)

in
‖2

F.
Finally, we have

‖X←−c ,[n]‖max ≤ min{
t

∏
n=c+1

‖G(n)
in
‖2

2,∞,
c

∏
n=t+1

‖G(n)
in
‖2

F} ≤
N

∏
n=1
‖G(n)

(2)‖2,∞. (4.8)

From the definition of TR-max-norm, we can deduce that ∏N
n=1 ‖G(n)

(2)‖2,∞ ≤ ‖X ‖TR−max,
so the max-norm of all the tensor circular unfoldings are upper-bounded by the TR-max-
norm.

After the relationship between the tensor unfolding max-norm and the TR-max-norm is
deduced, we also attempt to find the relationship of the max-norm and nuclear norm of the
unfoldings.

Theorem 4. The nuclear norm of X←−c ,[n] is upper-bounded by its weighted max-norm as:

‖X←−c ,[n]‖∗ ≤ RcRt+1‖X←−c ,[n]‖max (4.9)

Proof. From the theory in [63], the nuclear norm of a matrix can be transformed into the form
of the squared Frobenius norm of its factorizations. We can deduce that

‖X←−c ,[n]‖∗ = min
(U,V):X=UV>

1
2
(‖U‖2

F + ‖V‖2
F)

≤ min
L,R

RcRt+1

∑
i=1

1
2
(‖L(i, :)‖2

2 + ‖R(i, :)‖2
2)

≤ min
L,R

RcRt+1
1
2
(max

i
‖L(i, :)‖2

2 + max
i
‖R(i, :)‖2

2)

≤ min
L,R

RcRt+1 max{‖L‖2
2,∞, ‖R‖2

2,∞)

= RcRt+1‖X←−c ,[n]‖max

(4.10)

This indicates that minimizing the max-norm of the tensor circular unfoldings is to
minimize the upper-bound of the corresponding nuclear norm. Therefore, the max-norm of
the tensor circular unfoldings is a tighter regularization compared to its nuclear norm.

4.2 Max-norm regularized tensor ring completion

Though TR-WOPT mentioned in Chapter 2 achieves high performance in data completion
task, it considers all the missing entries of data as zero, and it computes the whole scale of
tensor in every iteration. If the data scale is huge and the missing rate is high, TR-WOPT
will cost much computer memory space and be ineffective as it computes the whole scale
tensor of which only a small percentage of entries is useful. In order to solve the problems of
TR-WOPT as mentioned, we propose a TRD algorithm based on stochastic gradient descent,
which only uses observed entries to compute the gradient of every core tensor is proposed.
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4.2.1 Model formulation

From the above theorems, we establish the relationship between the TR-max-norm and the
TR-rank, thus proving the TR-max-norm regularization can minimize the TR-rank. This
imposes the abilities of convergence stability and enhanced decomposition performance. The
proposed model is as follow:

min
X=Ψ([G])

f (X ,T ; Ω), s.t.‖X ‖TR−max ≤ λ, (4.11)

where T is the observed tensor, in which the observed entry is in the set Ω, and X is the
underlying tensor with TR structure. Similar to matrix max-norm, we can cast the TR-max-
norm into the semidefinite program which is equal to the following scheme:

‖X ‖TR−max := min
X=Ψ([G])

max{‖G(1)
(2)‖2,∞, · · · , ‖G(N)

(2) ‖2,∞} (4.12)

Then, if ‖X ‖TR−max is bounded by λ, solving the regularizer is equal to project the 2, ∞-
norm of all the mode-2 slices of the TR factors onto the set of {‖G(n)

(2)‖2,∞}N
n=1 ≤ λ, for

n = 1, . . . , N. So the original model can be transformed into solving the TR decomposition
problem with conditional projection:

min
[G]

f ([G],T ; Ω), s.t.‖G(n)
(2)‖2,∞ ≤ λn, n = 1, . . . , N (4.13)

The TRD model is non-convex, however, according to the experimental results of the following
sections, with the regularization on the TR factors, the model is to have faster and more stable
convergence. In the next section, we propose a scalable and efficient algorithm to solve the
model based on gradient descent method. We adopt the mini-batch stochastic gradient descent
(SGD) which takes the balance of low computational complexity and stable convergence.

4.2.2 Projected mini-batch SGD

We adopt the mini-batch stochastic gradient descent (SGD) algorithm in consideration of the
low memory cost and low per-iteration complexity. From equation (1.3) we see that an entry
of TR-approximated tensor is calculated by the multiple multiplication of the mode-2 slice of
the TR factor w.r.t. the indices. The element-wise loss function can be formulated as:

min
G(1)

i1
,...,G(N)

iN

∑
{i1...,iN}∈Ω

f (Trace(
N

∏
n=1

G(n)
in

), ti1,...,iN ), s.t.{‖G(n)
(2)‖2,∞}N

n=1 ≤ λ, (4.14)

where ti1,...,iN is an observed entry of incomplete tensor T . When we sample one entry of
index {i1, i2, . . . , iN}, the gradient of the corresponding slice can be calculated by:

∂ fi1,...,iN

∂G(n)
in

= O( fi1,...,iN )(
N

∏
k=n+1

G(k)
ik

n−1

∏
k=1

G(k)
ik
)>. (4.15)

When we calculate the batch-sized gradient of the TR model, the statistic gradients of the mode-
2 slices are the average values of the gradient accumulations. Let M be the batch-size, and we
define the index of the mth entry in the mini-batch as {im

1 , im
2 , · · · , im

N}, m = 1, · · · , M. For
in ∈ {1, 2, . . . , In}, n = 1, 2, . . . , N, the statistic gradient of every mode-2 slice is calculated
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as:
∂ f

∂G(n)
in

=
1

Nim
n =in

M

∑
m=1

m:im
n =in

O( fm)(
N

∏
k=n+1

G(k)
ik

n−1

∏
k=1

G(k)
ik
)>, (4.16)

where Nim
n =in is the number of repetition of the gradient calculation of a slice G(n)

in
. Then, for

every iteration of our algorithm, the updated TR-factors are evaluated and projected according
to the regularizer. For in ∈ {1, 2, . . . , In} and n = 1, . . . , N, the projector is as follows:

P(G(n)
in

) =





λn

‖G(n)
in
‖2,∞

G(n)
in

, ‖G(n)
in
‖2,∞ > λn;

G(n)
in

, otherwise.

(4.17)

4.3 Experimental results

4.3.1 Experimental settings

Adam gradient descent scheme. For gradient descent scheme, we employ an algorithm
named Adaptive Moment Estimation (Adam) as our gradient descent method, it has been
widely used in stochastic-gradient-based optimization [64]. We take the simple update
rule of Adam algorithm as: θt+1 = θt − η√

vt+ε
mt, where θ is the objective variables, t is

the number of iteration, η is the learning rate, mt and vt are termed as the first moment
estimate and second moment estimate, which are defined as mt = β1mt−1 + (1− β1)gt and
vt = β2vt−1 + (1− β2)g2

t respectively, gt is the gradient (i.e., calculated by (4.16) in our
method). β1, β2 and ε are hyper parameters which are set as 0.9, 0.999 and 10−8 respectively
according to the author.
Stopping condition. Furthermore, we consider to use the relative tolerance as one of the the
stopping conditions in the following experiments to increase efficiency. For the TR factors of
iteration t and t + 1, the relative tolerance of the TR factors is defined as:

tol = max{‖G
(1)
t+1 − G(1)

t ‖F

‖G(1)
t+1‖F

, . . . ,
‖G(N)

t+1 − G(N)
t ‖F

‖G(N)
t+1‖F

} (4.18)

When the tol reaches the expected value, or the iteration reaches the prescribed time, the
iteration will be stopped.
The bound of TR-max-norm. The selection of the upper bound of the TR-max-norm is the
most important parameter for the model, as it largely influences the convergence speed and
decomposition performance. We provide a simple scheme for changing the upper bound λ
adaptively. For every iteration, for n = 1, . . . , N, we calculate λn as follows:

λn = κ‖G(n)‖F/In (4.19)

The selection scheme applies the average l2-norm of all the rows of the mode-2 slice of the
TR factors as the basic reference, and κ is the tuning parameter which controls the influence
of the max-norm regularizer. We empirically choose κ from 5 to 10 w.r.t the different data set
to obtain the best performance. Finally, the algorithm is summarized in Algorithm 3.

4.3.2 Convergence analysis

It should be noted that the global convergence of our algorithm cannot be theoretically
guaranteed, because the proposed algorithm is non-convex. However, the convergence property
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Algorithm 3 Projected mini-batch SGD for (4.11)

input: PΩ(T ), initial TR rank {Rn}N
n=1,

initialization: For n = 1, . . . , N, random sample G(n) by distribution N ∼ (0, 1), batch
size 1e4, maximum iteration 1e3, tol = 1e− 4, κ = 10.
repeat

Random sample entries from Ω w.r.t. the batch size.
repeat

for n = 1 to N do
Compute gradients according to (4.15)

end for
until All the gradients of the batch are computed
Compute the statistical gradients according to (4.16)
Do gradient descent according to Adam scheme.
Project the updated TR-factor according to (4.17) and (4.19).

until Maximum iteration is reached, or (4.18) is satisfied.
output: optimized TR factors [G].

can be verified empirically (see the simulation experiment in Figure 4.1). Moreover, the
extensive results in the experimental section also illustrate the stability and effectiveness of
the proposed algorithm.

4.3.3 Synthetic data analysis

In this section, we test our method in a large and sparse synthetic tensor. All the loss function
in the experiments are set as the squared Frobenius norm, i.e., f (·) = ‖ · ‖2

F.
In the simulation experiment, we aim to test the algorithm stability in comparison with

the baseline algorithm TR-SGD [30] by different rank selection. Moreover, the influence
of the hyper-parameter κ to the completion performance is also investigated. We use the
synthetic values which are sampled from a highly oscillating function: f (x) = sin x

4 cos(x2)
to generate the tensor data. We sample 108 values from the function, then the sampled values
are reshaped to the tensor of size 100× 100× 100× 100. The tensor data is expected to
own good low-rank properties and easy to be approximated by tensor decompositions. We
randomly remove 99.9% entries of the tensor and conduct the completion experiments by
standard TR-SGD and the TR-max-norm regularized SGD (proposed). For TR-rank selection,
we choose the TR-rank as {2, 2, 2, 2} and {5, 5, 5, 5} respectively. All the other optimization
parameters of standard TR-SGD and the proposed method follow the statement in Algorithm
3.

Figure 4.2 shows the changes in the loss function value with the iteration increases. From
Figure 4.2 (a) we can see, when the TR-rank is set as {2, 2, 2, 2}, our algorithm converges
much faster than standard TR-SGD. Moreover, because of the high sparsity of the tensor data,
when TR-rank is set as {5, 5, 5, 5}, the standard TR-SGD becomes overfitting and fails to
converge, while the algorithm with TR-max-norm regularization obtains fast convergence
and good performance. The results also highlight the property of rank selection robustness
of the proposed algorithm. This is because the TR-max-norm regularization provides the
ability to lower the initial TR-rank if the prescribed TR-rank is higher than we need. For
Figure 4.2 (b), the TR-rank is set as {5, 5, 5, 5} for all the cases and the hyper-parameter κ
is set as 2, 5, 10 for the proposed algorithm, respectively. It should be noted that the lower
value of κ provides higher regularization weight. From the results we can see, our algorithm
fails when κ = 2 because the regularization is too strong, while the κ = 5 obtains the fastest
convergence. When κ = 10, the convergence become slow because of the low regularization
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FIGURE 4.1: The convergence property for the proposed algorithm under
different tensors. The tensors are of size 25× 25× 25 (3D), 7× 7× 7×
7× 7 (5D), 5× 5× 5× 5× 5× 5× 5 (7D), respectively, and generated
by randomly initialized TR factors with TR-rank 2. The missing rate of all
the tensors are set as 0.9 equally. Each experiment is conducted 100 times

independently and the graphs records the average results.
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FIGURE 4.2: Convergence property of the proposed method and the standard
TR-SGD w.r.t. the increase of the iteration. For (a), we set κ = 5 for our
algorithm. For (b), we set the TR-rank of the two algorithms as {5, 5, 5, 5}.
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weight. From the trend, we can see that the selection of the hyper-parameter is very essential
to the performance of our algorithm.

4.4 Conclusion

In this work, by leveraging the latent space of the TR factors, we propose a novel tensor
low-rank regularizer which minimizes the TR-rank of the underlying tensor. The novel regu-
larizer is theoretically proved to regularize the low-TR-rank approximation of the underlying
tensor. Then, to solve the TRD model with the TR-max-norm regularization, we propose
an efficient and high-performance completion algorithm by projected mini-batch stochastic
gradient descent. The proposed algorithm show fast and stable convergence in synthetic data
in comparison with the standard TR-SGD algorithm. Furthermore, the tensor max-norm regu-
larization is a promising framework and it should be extended to other tensor decomposition
models to improve the performance of the existing algorithms.
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Chapter 5

Large-scale Tensor Denoising via
Tensor Ring Decomposition

With the development of data acquisition and storage technology, large-scale data (i.e., big data)
becomes ubiquitous in many fields such as computational neuroscience, signal processing,
machine learning, and pattern recognition [65]. Among these fields, large amounts of multi-
dimensional data (i.e., tensors) of high dimensionality are generated. Big data is of large
volume and complex, which is hard to process by traditional methods like singular value
decomposition (SVD) and principal component analysis (PCA) due to their high computational
complexity. Moreover, in order to fit in these algorithms, traditional methods need operations
to transform tensor data to matrices and vectors, which leads to the loss of adjacent structure
information and the redundant space cost of data.

Though tensor decomposition has the merits of data structure conservation and high data
representation ability, when dealing with large-scale data, traditional deterministic algorithms
like alternative least squares (ALS) and gradient descent (GD) are of low-efficiency due to their
high computational cost and low convergence rate. Therefore, fast and efficient algorithms are
of high demand for large-scale tensor decomposition.

5.1 Randomized algorithms

The randomization technology is a powerful computation acceleration technique which has
been proposed and studied for decades [66, 67]. Recently, randomness-based tensor decom-
position has drawn people’s attention. Literature [68] proposes a randomized algorithm
for large-scale tensors based on Tucker decomposition, it can process arbitrarily large-scale
tensors with low multi-linear rank and the method shows robustness to various data set. A
randomized least squares algorithm for CPD is proposed in [69], it is much faster than the
traditional CP least squares algorithm and can keep the high performance at the same time.
The work in [70] provides a different randomized CPD algorithm, they first find the CPD
of the small tensor which is generated by tensor random projection of the large-scale tensor,
then the CPD of the large-scale tensor is obtained by back projection of the CPD of the small
tensor.

Many of these randomized tensor decomposition algorithms are efficient and perform well
in simulation experiments. However, to the best of our knowledge, randomized techniques
have not been applied to TRD, and few studies are conducted to explore the performance
of randomized tensor decomposition algorithms in real-world data. Facing the fact that
TRD lacks fast and efficient algorithms for large-scale tensor, in this work, we explore the
effectiveness of tensor random projection method on TRD.
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5.2 Randomized tensor ring decomposition

5.2.1 Tensor random projection

Tensor random projection (TRP) has drawn people’s attention in the very recent years, and
several studies have been conducted based on CPD and TKD [68, 70]. Similar to matrix
projection, TRP method aims to process random projection at every mode of the tensor, then a
much smaller subspace tensor is obtained which reserves most of the actions of the original
tensor. The TRP is simply formulated as follows:

X ≈ X ×1 Q1QT
1 ×2 · · · ×N QNQT

N

≈ P ×1 Q1 ×2 · · · ×N QN ,
(5.1)

where×n is the mode-n tensor production, see details in [2], [Qn] are the orthogonal matrices,
and P is the projected tensor. After projection, the projected tensor P is employed to calculate
the desired low-rank approximation of the original large-scale tensor. The implementation
details of the TRP method are illustrated in the next subsection.

It should be noted that for randomized algorithms, several techniques can be applied to
the projection step to improve the numerical stability of the projection, thus providing higher
decomposition performance. For example, adopting structured projection matrices instead
of Gaussian distribution [71] and applying power iterations method to update the projected
tensor in order to achieve fast decay of the spectrum of the mode-n unfolding of the projected
tensor [66].

5.2.2 Model formulation

The problem of finding TRD is formulated by the following model:

min
[Gn]
‖X −Ψ([Gn])‖2

F, (5.2)

where X is the target tensor to be decomposed, [Gn] are the TR factors to be considered, and
Ψ(·) is the function which transforms the TR factors into the approximated tensor. In [35],
the model is solved by various methods like TRSVD, TRALS, TRSGD, etc. However, the
SVD-based and ALS-based algorithms are of high computational cost. When facing large-
scale data, tremendous computing resource is needed. In addition, though TRSGD owns low
complexity on every iteration and is suitable for large-scale computation, the convergence
speed is rather slow and the performance cannot be guaranteed. Under this situation, we
combine the TRP technique with the traditional TRD algorithms, (e.g. TRALS and TRSVD),
to make it possible for fast and reliable TRD of large-scale tensor. The randomized tensor
ring decomposition (rTRD) algorithms which is based on ALS (i.e., rTRALS) and SVD (i.e.,
rTRSVD) are illustrated by Algorithm 4.

5.3 Experimental results

5.3.1 Large-scale RGB image denoising

The projection size [Kn] is the most important hyper-parameter of the TRP step of our
algorithm because it determines the amounts of residual features of the original tensor to
be retained and it balances the computational speed and the accuracy. This experiment is
to explore the influence of the different size of the projected tensor to the performance and
running time of our algorithm, and compare the performance with the TRSVD algorithm. We
compare the traditional TRSVD and our rTRD to see the performance and speed differences
w.r.t. different projection size and noise strength. We choose the RGB image of size 5690×
4234× 3 as the target tensor and add noise of 0 dB and 10 dB respectively. The RGB image is
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Algorithm 4 Randomized tensor ring decomposition (rTRD)

input: A large-scale tensor X ∈ RI1×I2×...×IN , the projection size of every mode [Kn], and
the TR-rank R1, . . . , RN .
output: TR factors [Gn] of the large-scale tensor X .
for n = 1 to N do

Create matrix M ∈ R∏N
i=1,i 6=n Ii×Kn following the Gaussian distribution.

Y=X(n)M % random projection
[Qn,∼] = QR(Y) % economy QR decomposition
P ← X ×n QT

n
end for
Obtain TR factors [Zn] of P by TRALS or TRSVD [18] .
for n = 1 to N do
Gn = Zn ×2 Qn.

end for

time=83.91 
RSE=0.910 
PSNR=10.54

time=0.38 
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FIGURE 5.1: Denoising results of a large-scale image with different projec-
tion size and noise strength.

a typical order-3 tensor of large-scale and the image modes are considered to have strong low-
rankness, so the projection of mode-1 and mode-2 can largely reduce the computational cost.
The projection size of mode-1 and mode-2 of the tensor data are chosen from {10, 50, 100}.
The mode-3 of the tensor is small so it remains as 3. As for parameter settings, because only
one iteration is needed and the TR-rank is automatically chosen in our algorithm, we set the
tolerance of TRSVD as 0.01. Figure 5.1 shows the approximation error (i.e., RSE and PSNR)
and computational time of the compared algorithms. From the experiment we can see, our
method runs much faster than TRSVD and the performance is always higher than TRSVD.
When the noise is 0 dB, the best denoising performance is obtained when the projection size
is {50, 50, 3}, and the performance of the randomized algorithms remain steady and when
the projection size is {10, 10, 3}. Moreover, when the noise is 10 dB, the best performance is
obtained when the projection size is {100, 100, 3}, and the denoising performance falls when
the projection size decreases. The results indicate that the running time increases when the
projection size increases, and the image with less noise requires a higher projection size to
reach a better performance.
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5.3.2 Hyperspectral image denoising

Input rTRALS rTRSVD TRSGD rSVDrCPALS       rTucker

Original

0dB

20dB

10dB

FIGURE 5.2: Visual results of HSI data reconstruction with different noise
strength.

Hyperspectral image (HSI) is a typical order-3 tensor (i.e., height× weights× bands) with
large-scale. For HSI image, the spectrum-mode (mode-3) is usually considered to have strong
low-rankness, so the projection of mode-3 can largely reduce the computational cost. We
compare our algorithms to the related algorithms which are suitable for large-scale data,
i.e., TRSGD [35], rTucker [68] and rCPALS [70]. We also employ matrix-based algorithm
rSVD [66] which is often used in HSI image processing and rSVD is implemented by mode-
3 unfolding operation. The projection size of all the algorithms are set as 100× 100× 6
for the tested 200× 200× 80 HSI image, and the other parameters are set to get the best
performance. Figure 5.2 and Table 5.1 show the visual and numerical results respectively.
rTRALS outperforms the compared algorithms in the experiment.

TABLE 5.1: Numerical results of HSI data reconstruction with different noise
strength.

Noise rTRALS rTRSVD TRSGD rCPALS rTucker rSVD

-
RSE
Time

0.0150
60.01

0.149
0.45

0.249
9.45

0.100
5.38

0.0110
0.50

0.0303
1.84

20dB
RSE
Time

0.0294
60.21

0.143
1.20

0.253
206.82

0.101
3.97

0.0388
0.54

0.0594
2.33

10dB
RSE
Time

0.0811
59.61

0.113
1.27

0.293
210.89

0.107
3.91

0.114
0.46

0.156
2.08

0dB
RSE
Time

0.285
59.05

0.328
0.78

0.437
206.62

0.166
3.95

0.367
0.44

0.431
1.87

5.4 Conclusion

In this work, based on tensor random projection method, we proposed rTRALS and rTRSVD
algorithms for fast and reliable TRD. Without losing accuracy, the two algorithms perform
much faster than their traditional counterparts and outperform the compared randomized
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algorithms in large-scale RGB image and HSI image denoising experiments. The randomized
method is a promising aspect for large-scale data processing. In our future work, we will focus
on further improving the performance of decomposition and applying randomized algorithms
to sparse and incomplete tensors.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, in order to solve various problems that are extensively concerned in the tensor
field, several methods based on tensor ring decomposition (TRD) have been proposed which
can be applied to tensor decomposition, tensor completion and tensor denoising. The con-
tributions in the thesis prove that TRD is a promising tool which can be applied to various
data processing tasks. In addition, the results can be an important reference to academic
and industrial fields to achieve high performance when applying tensor methods. The main
conclusion of the thesis are summarized as follows:

• TR-WOPT (Chapter 2): In consideration of the performance descent of the tensor
decomposition and completion based on CP and Tucker in higher-order tensor, we
apply the TRD model to deal with high-order tensor problems. First, we formulate an
optimization model to find the optimal TRD by partially observed high-order tensor.
Then, by applying gradient-based algorithms, the optimization model is solved to
obtain the low-rank TRD approximation of the incomplete tensor. Finally, the TRD is
converted to an underlying tensor to predict the missing entries of the data. Furthermore,
we also develop a data reformulate method named visual data tensorization (VDT),
to convert the low-order tensor to higher-order tensor which is a better structure of
visual data. The experimental results show that our TRWOPT obtains high performance
in high-order tensor completion tasks. Moreover, the VDT method can improve the
performance of our method in visual data recovery tasks.

• TRLRF and TRLNN (Chapter 3): The model selection is a big problem for TRD due
to the multilinear rank. We first explore the relationship between the rank of tensor
unfoldings and TR-rank, and apply nuclear norm regularization on the rank-modes of
the TR factors. Then, we give theoretical proof of the relationship between the rank of
mode-2 unfoldings of TR factors and the Tucker-rank of the tensor, and impose nuclear
norm on the mode-2 unfoldings of the TR factors. Based on the overlapped nuclear
norm and latent nuclear norm respectively, we propose two solving models named tensor
ring low-rank factor (TRLRF) and tensor ring latent nuclear norm (TRLNN), which
are suitable for the different data structures. The models are solved by the alternating
direction method of multipliers (ADMM) solving scheme. The experiments show that
our methods are robust to different rank selection of the models and the complexity of
singular value decomposition (SVD) operation is much lower than the traditional tensor
completion method based on nuclear norm minimization.

• TR-max-norm (Chapter 4): Traditional low-rank tensor completion methods apply
nuclear norm as the low-rank regularizer. However, the nuclear norm regularizer needs
to process multiple SVD operations in every iteration which is of high computational
cost. In consideration of this situation, we investigate a substitute of nuclear norm
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named max-norm which is an efficient matrix low-rank regularizer. We extend it
to the tensor field by TRD, and formulate a TR-max-norm. The proposed norm is
theoretically proved to be a low-TR-rank regularizer for low-rank tensor approximation.
A tensor completion model is formulated with TR-max-norm regularization and is
solved by mini-batch stochastic gradient descent (SGD) algorithm with projection in
every iteration. In synthetic data experiments, the model shows faster convergence and
rank robustness in comparison with the traditional TR-SGD algorithm.

• RTRD (Chapter 5): Though TRD is a very promising tensor decomposition model,
it lacks large-scale algorithm. By applying the randomized algorithm which is a
powerful tool for fast large-scale data processing, we proposed a randomized tensor ring
decomposition (RTRD) scheme for fast large-scale tensor decomposition. By random
tensor projection (RTP), the large-scale tensor is firstly projected into a small-sized
tensor which contains the most of the actions of the original tensor. Then, the traditional
TRD algorithms such as tensor ring alternating least squares (TRALS) and tensor
ring singular value decomposition (TRSVD) are processed on the small-sized tensor.
Finally, the obtained TRD of the small-sized tensor is back-projected to the TRD of the
large-scale tensor. From the experiments, we can see the computational time of TRD is
largely reduced without the loss of accuracy.

6.2 Future work

Though we have developed several algorithms based on TRD to solve the problems in the
tensor field, there are still remained problems to be explored in the future:

• Our TRWOPT shows good performance in high-order and high missing rate tensor
completion tasks. However, we have to set the reshape parameters for the proposed VDT
method. In our future work, we will try to develop a method which can automatically
learn the best data structure for the algorithm.

• For our TRLRF and TRLNN, they provide a good solution to solve the multilinear rank
selection problem. However, the algorithms still have some limitations. For instance, if
the selected rank is too low or too high, the performance will also be unsatisfied. The
algorithms can only ensure that if the TR-rank is selected as a relatively high value, our
algorithm can find the near optimal TR-rank to fit the data. Moreover, higher TR-rank
selection means higher computational complexity. In consideration of the limitation of
our algorithms, in our future work, we will develop more powerful algorithms which
can determine the TR rank automatically.

• For our TR-max-norm and RTRD methods, they are very efficient algorithms in pro-
cessing large-scale tensor ring decomposition. As a newly developed norm, we need
to find more theoretical properties of our TR-max-norm. For example, sample com-
plexity. Moreover, for RTRD scheme, in our future work, we will give the a theoretical
error bound of the tensor projection. The algorithm development of the fast TRD of
incomplete and highly sparse large-scale tensor should also be taken into consideration.

• Most of the proposed TRD-based methods are only tested on the synthetic data and
benchmark data. In our future work, we will apply our methods to more real-world
applications.
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