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Abstract

Epilepsy is a chronic disorder of the brain caused by excessive discharge of brain cells. Cur-

rently, doctors are manually diagnosing by visual judgment based on long-term intracranial

electroencephalogram (iEEG) data. This diagnostic procedure is very time consuming and

relies on experience. In order to reduce the workload of the doctor, an automatic diagnosis

system with high accuracy is required.

In recent years, machine learning methods are often applied to medical diagnosis field.

In this thesis, we proposed several methods using conventional machine learning and deep

learning. Conventional machine learning methods use filters, entropy and short time Fourier

transform (STFT) to extract features. Next, based on the labeled data, the support vector

machine (SVM), neural network, and convolutional neural network (CNN) classification

models were used for focal localization problems and achieve high performance. However,

when these methods are applied to practical clinical patient data, it is difficult to acquire a

large amount of iEEG data with high quality labels.

Aim at this problem, this study uses a weakly supervised learning method (PU learning)

to learn a binary classifier with a small amount of labeled data and a large amount of

unlabeled data. The labeling work can be greatly reduced. In addition, a data augmentation

method is used based on the discrete cosine transform (DCT) to generate a large amount of

artificial data. Combine the raw data and artificial data as a training data set, the performance
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of the model is improved. Further, an epilepsy diagnosis and treatment system was proposed

and effectively improving the diagnosis and treatment process.

The structure of this thesis is as follows. Chapter 1 is an introduction and describes the

purpose and background of the research. Chapter 2 introduces the principles, statistical

features, and datasets of the scalp and intracranial EEG. Chapter 3 describes the feature

extraction method and its experimental results. Chapter 4 describes the deep learning method

and its experimental results. Chapter 5 introduces the weakly supervised learning method

and explains its mathematical principle and experimental results. Chapter 6 describes the

data augmentation method and its experimental results. Chapter 7 Summary of research and

future issues are described.
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Abstract (和和和文文文)

癲癇には、脳細胞の過剰な放電によって引き起こされる脳の慢性障害病気であ

る。現在、医師は長時間記録された頭蓋内脳波（iEEG）データに基き、手動的

に目視判断による癲癇を診断している。この診断法は非常に時間がかかることと

経験に依存している。医師の作業負荷を軽減するために、高精度癲癇の自動診断

システムが必要である。

近年、機械学習法は医学分野の診断に適用されることが多い。本論文では、

従来の機械学習法と深層学習法を使用し、いくつかの手法を提案した。従来の機

械学習方法では、フィルタ、エントロピーおよび短時間フーリエ変換（STFT）

を使用し、特徴を抽出する。またウェーブレット変換（WT）、経験モード分解

（EMD）などにより、適切な特徴が抽出される。次にラベル付きデータに基づ

いて、サポートベクターマシン（SVM）、ニューラルネットワーク、畳み込み

ニューラルネットワーク（CNN）の分類モデルを使用し、癲癇焦点の局所化の

高いパフォーマンスの実現ができた。これらの方法を患者実測データに適用する

場合には、大量の高品質なラベルが付いたデータを取得することは難しい。

このため、本研究では、弱教師あり学習法を利用することで、少量のラベル

付きデータと大量のラベルなしデータでバイナリ分類器を学習でき、それによれ

ば、医師のラベル作業が大幅に削減されることができる。また、離散余弦変換に

基づいてデータ増強法を使用し、大量的な人工データを生成し、実データと人工
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データをトレーニングデータセットとして組み合わせる。モデルのパフォーマン

スを向上した。さらに、癲癇の補助治療を支援するため手法を提案し、診断と治

療プロセスを効果的に改善した。

本論文の構成は下記の通りである。第１章は概論で、研究の目的と背景を述

べている。第２章は頭皮脳波と頭蓋内脳波の原理、統計学特徴、データセットに

ついて紹介する。第３章は特徴抽出法による実験結果についてを述べる。第４章

は深層学習法とその実験結果を述べる。第５章は弱教師ありの学習法を紹介し、

その数学原理と実験結果について説明する。第６章はデータ増強法と実験結果を

述べている。第７章研究のまとめと今後の課題について述べる。
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1. Introduction

1.1 Epilepsy

Epilepsy is a chronic neurological disorder of the brain which caused by excessive electrical

discharges that affects people globally, approximately 65 million people have epilepsy

(Epilepsy Foundation of America) [1]. In terms of pediatric patients, 30% of them will face

intellectual disability and neurological disorders problems. On the other hand, every year,

50-100 traffic accidents caused by epilepsy seizures are happening in Japan. Some of the

epileptic patients are cured or control the frequency of seizures using antiepileptic drugs,

but for drug-resistant patients, medication is ineffect!ive and they still face life problems

caused by epilepsy. The International League Against Epilepsy (ILAE) [2] defined epilepsy

by any of the following conditions:

• At least two unprovoked (or reflex) seizures occurring >24 h apart;

• One unprovoked (or reflex) seizure and a probability of further seizures similar to the

general recurrence risk (at least 60%) after two unprovoked seizures, occurring over

the next 10 years;

• Diagnosis of an epilepsy syndrome.

According to the definition given by the ILAE [3], there are three types of epileptic

seizures: focal onset, generalized onset and unknown onset. In this article, we focus on

focal onset, which is recurrent seizures together with abnormal discharge in focal brain

areas. The patients suffering from focal seizures can be treated with daily medication to
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control epileptic seizure frequency, but approximately 30% of focal seizure patients are

refractory to medication [4], hence remove the epileptic focus by surgery is considered

as a common treatment. Before the surgery, it needs to locate the epileptic focus and

it also the most important factor affecting the outcome of surgery. To determine the

localization of epileptic focus, physical exam, iEEG, magnetoencephalogram (MEG),

functional magnetic resonance imaging (fMRI) and other modalities are usually performed

[5–8]. Considering the cost of MEG and the recording condition (can not move freely),

MEG is not practical for experimental work. Because the time resolution of fMRI is very

low, for some neurodegenerative diseases, the brain activities can not be completely recorded.

iEEG is recorded directly from the cortex, which enables clinical experts to analyze the

brain activity effective. These advantages make iEEG as a fundamental tool in the detection,

diagnosis, and treatment of epilepsy.

While in current clinical practice Fig. 1.1, clinical experts still through visual for

judgment and give annotation manually, which is a time-consuming process and subjective

process, the diagnostic results from different clinical experts are often not identical, usually

clinical experts need to vote on the diagnosis. In addition, the number of clinical experts is

far from enough compared to a large number of patients (e.g. only 689 clinical experts in

Japan who can do the diagnosis of epilepsy). Therefore, in the diagnosis of epilepsy, there

is a very strong demand.

According to the period of iEEG collection, there are two kinds of brain signals, one is

interictal signal which is recorded between epileptic seizures, the other one is ictal signal

which is recorded during an epileptic seizure, in this article, we use the interictal brain

signal data. The channel recorded from the epileptogenic area is named focal channel,

and the channel recorded from the non-epileptogenic area is named non-focal channel.

During interictal periods, the epileptic spikes are often used for diagnosis of epilepsy, which

can classify and localize the epileptic focus. The International Federation of Societies for

Electroencephalography and Clinical Neurophysiology (IFSECN) [9] give the following
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Suspected epilepsy patients

Record surface EEG

Record iEEG signal
(Usually two weeks)

Clinical expert judges the iEEG 
signals visually.

Confirm which channel is removed

Secondary surgery: Channel resection

Regular physical examination

EpilepsyHealth Other illnesses

Invalid for drugs Recovery through drugsLong-term medication

Figure 1.1: Current clinical epilepsy diagnosis procedure.

definitions of spikes:

• Sharp wave: A transient, clearly distinguished from background activity, with pointed

peak at a conventional paper speed or time scale and duration of 70 ± 200 ms, i.e.

over 1/4 ± 1/5 s approximately.

• Spike: A transient, clearly distinguished from background activity, with pointed peak

at a conventional paper speed or time scale and a duration from 20 to under 70 ms, i.e.

1/50 ± 1/15 s, approximately.

• Slow wave: Wave with duration longer than alpha waves, i.e. over 1/8 s.
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• Spike-and-slow-wave complex: A pattern consisting of a spike followed by a slow

wave.

• Multiple spike complex: A sequence of two or more spikes.

• Polyspikes-and-slow-wave complex: A sequence of two or more spikes associated

with one or more slow waves.

1.2 Related Work

In recent years, a variety of methods are proposed for epileptic focus localization, such

as template matching [10–15], in this method, first, we need collectted a large amount of

sample template waveforms form patients, when we diagnose the new EEG signal, compare

with the templates in database to decide whether it is focal or non-focal signal. thereby make

automated detection faster than conventional Visual diagnosis. However, this method also

has obvious limitations. The samples collected by the database directly affect the diagnosis

results. dictionary learning [16], by this method, the author can infer the iEEG from

only the scalp EEG by using that dictionary and mapping function. classification [17–21]

and some other methods. With the rapid development of artificial neural networks [22],

classification methods show a better performance in epileptic focus localization problem. In

the classification method, there are two main steps, feature extraction and classification. In

the feature extraction step, Discrete wavelet transform (DWT) [23–28], Entropy [29] [30],

Fourier transform (FT) [31], Empirical mode decomposition (EMD) [32] and Filter [33]

are often used. The resolution of time and frequency is the main advantage of DWT, which

makes it especially suitable for the analysis of the non-stationary signals (e.g. iEEG). EMD

method decomposes a signal into intrinsic mode functions (IMFs), which is the modulated

component of amplitude and frequency. Epilepsy is caused by excessive electrical discharges

in brain cells, the entropy method is a measure of the energy which is very suit for feature

extraction of epilepsy brain signal.
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In the classification step, K-nearest neighbor (KNN), probabilistic neural network (PNN)

[17], SVM, FCNN, CNN and other methods are usually be used. In our experiments, several

typical supervised learning methods (SVM, FCNN and CNN) are used for classification.

Moreover, we introduce the positive unlabeled (PU) learning method to further reduce the

workload of clinical experts [34], which solves the label problem very well, and greatly

reduces the workload of clinical experts.

1.3 Thesis Contribution

In this thesis, we propose four major methods (feature extraction methods, end-to-end

models, weakly supervised learning, data augmentation) 1.2 to solve the practical problems

encountered in the clinical diagnosis of epilepsy.

In the traditional feature extraction method, we pay attention to the medical interpretabil-

ity of the method when selecting the feature extraction method. In order to reduce the

manually select feature workload, we propose some end-to-end models which can directly

classify the original signal, avoid a lot of feature extraction work. In view of the difficulty in

obtaining medical data labels, we introduce weakly supervised learning (PU learning). The

annotation work is greatly reduced while ensuring the performance of the model. Because

the performance of the method is heavily dependent on the amount of data, we propose a data

augmentation method that generates a large amount of artificial data and the performance of

the models is improved.

1.4 Thesis Outline

The structure of this thesis is as follows. The first chapter outlines the purpose and back-

ground of the research, and the second chapter introduces the principles of intracranial EEG

and statistical feature extraction methods. Chapter 3 describes the experimental results of the

feature extraction method. Chapter 4 describes the deep learning method and experimental
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Feature extraction 
methods End-to-end models

Weakly supervised 
learning

Data augmentation 
methods

High performance.

Heavy workload in annotation 
and feature extraction.

Avoid feature extraction.

Computationally intensive.

Increase the amount of 
data without increasing 

the cost of data collection.
Reduce the workload in 

annotation.

Significantly increase the 
amount of calculation.

Performance has some losses.

Figure 1.2: Advantages and disadvantages of the four major methods.

results. Chapter 5 introduces a weakly supervised learning method. Chapter 6 describes the

data augmentation method. Chapter 7 Summary of research and future issues.
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2. Electroencephalogram

EEG examination is a commonly used method for the diagnosis of epilepsy. Compared with

other methods (CT, PET, fMRI, etc.), EEG is easy to collect. Epilepsy is a disease caused

by abnormal discharge of brain cells, and brain waves can directly record the cell discharge

activity of the brain. Currently, EEG is the necessary examination method in the diagnosis

of epilepsy. According to the location of EEG acquisition, EEG is divided into scalp EEG

and iEEG. We will introduce two kinds of EEG separately.

2.1 Scalp Electroencephalogram

Scalp EEG is a typically noninvasive electrophysiological monitoring method to record the

electrical activity of the brain. Scalp EEG is usually used in the diagnose of epilepsy, brain

death, for tumors, stroke and other brain disorders. in the thesis, Bonn dataset [35] is used.

2.1.1 Bonn Dataset

Bonn dataset is recorded from The Department of Epileptology in Bonn and is a clinic

recognized as an Epilepsy Center in Germany. This dataset includes five sets (A-E), each

set containing 100 EEG segments of 23.6 seconds with a sampling rate of 173.61 Hz, all

samples are processed with a bandpass filter (0.5–40 [Hz]). Sets A and B are recorded from

five healthy volunteers using a standardized electrode placement scheme Fig. 2.1. A set is

recorded by volunteers were relaxed in an awake state with eyes open. B set is recorded
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by volunteers were relaxed in an awake state with eyes closed. Sets C, D and E record

from the patients who had achieved complete seizure control after resection of one of the

hippocampal formations. C set recorded from the hippocampal formation of the opposite

hemisphere of the brain. D set recorded from within the epileptogenic zone. Sets C and

D contained only activity measured during seizure free intervals, E set contained seizure

activity. The five sets is shown in Fig. 2.2.
etc.). Motor imagery (MI) based BCI is an interface 
that users can input commands by imagining the 
movement of a certain body part [12]. Compare with 
P300 and SSVEP based BCI, the advantage of MI 
based BCI is that the stimulus is unnecessary. 
However, it not effective for anyone. 

In the previous studies, the EEG based BCI 
system usually uses a single type of external stimuli, 
such as auditory [13] or visual [14] stimuli. By using 
the single external stimulus, people are easy to be 
influenced by outside noise and this can affect 
significantly the experiment results. A comparison of 
visual stimulus and audiovisual stimulus is given 
[15]. In this study, we developed a hybrid BCI 
system based on P300 evoked by auditory and visual 
stimuli simultaneously. These two type of stimulus 
can evoke the essentially different ERP with visual 
evoked ERP. We conduct experiments and show that 
the enhanced P300 appears under the hybrid stimulus. 
The experiment results show that P300 evoked by 
hybrid stimuli provide us a more reliable BCI system 
with a higher performance than single stimulus. 
 
2. Experiment and Method 
 
2.1. Participants 
 

Four male volunteers aged 20-26 years 
participated in the experiments. All the participants 
are healthy and normal vision and hearing. The 
participants sit in a chair in a quiet room and 30 cm 
away from an LCD monitor (14 inch, 1920*1080, 60 
Hz refresh rate).  
 
2.2. Equipments 
 

We use the g.Tec EEG system (a 32-channel EEG 
cap (11 electrodes), and a g.USBamp amplifier). The 
location of the electrodes is selected at Fz, Cp5, Cz, 
Cp6, Pz, PO7, Oz and PO8. The system is 10-20 
international system. The ground electrode is placed 
on the forehead (Fpz) and the reference electrodes 
are placed on the left earlobe (A1) and right earlobe 
(A2). All the electrode locations are shown in Fig. 2. 

The EEG signals are amplified and digitized by 
g.USBamp amplifier with a 256-Hz sampling 
frequency rate. EEG signals are processed by a 
bandpass filter between 0.5-30 Hz and a notch filter 
50 Hz to remove the AC artifacts. All the processes 
are controlled by Simulink/Matlab (Mathworks Inc., 
USA). 
 
2.3. Auditory stimuli experiment 
 

In the auditory stimuli experiment, the image 
shown in Fig. 3 is displayed on the LCD monitor. 
Number 1 to number 8 represents 8 different targets, 
characters   under   the   numbers   represented   the  

 
Fig. 2: The location of electrodes 

 

 
Fig. 3: Auditory stimuli based experiment 

 

 
Fig. 4: Experiment process 

 
corresponding sounds for each number. The target 
number sequence is displayed in the center target 
box. 

Experiment contains a training phase and an 
online test phase. In the training phase, 8 different 
targets are set as 8 runs, and each run consists of 5 
trials. Every trial has 8 sub-trials, shown in Fig. 4 (m 
= 8, n = 5). At the beginning of each trial, there is a 
one second stop for the subject to see the target 
number, then 5 trails will perform. In every trial, 8 
auditory stimuli (sub-trial) randomly play the 8 
sounds for once,  the  auditory  stimulus  presentation  

Fpz

Fz

Cz
Cp5 Cp6

Pz

Oz
PO7 PO8 A2A1

Target
12345678

+

Sound

2018 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia).

978-1-5386-5807-9/18/$31.00 ©2018 IEEE

Figure 2.1: International 10–20 system.

2.1.2 Visualization of Bonn Dataset

In order to understand the EEG data more clearly, we use the dimension reduction method

to visualize the data, you can find the method introduction and result in web 1. t-SNE

Algorithm is used for dimension reduction which is easily visualized by us humans. The

visualize the Bonn data is shown in Fig. 2.3.

1https://www.kaggle.com/sabinem/geometry-of-epilepsy-detection/notebook
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Figure 2.2: Samples of scalp EEG (Bonn Dataset).

2.2 Intracranial Electroencephalogram

iEEG is electrophysiological monitoring that directly records electrical activity from the

cerebral cortex. Intracranial electrode placement is shown in Fig. 2.4 (You can find this

figure in web 2) Compare with scalp EEG, iEEG can capture more intracranial information

and reduce noise interference. In the thesis, two datasets are used, one is the public dataset

of Bern Barcelona Dataset, another is recorded in Juntendo University.

2.2.1 Bern Barcelona Dataset

The dataset [36] includes the iEEG recorded from five patients, who have long standing

pharmacoresistant temporal lobe epilepsy and are candidates for epilepsy surgery. iEEG are

2https://www.sciencemag.org/news/2019/01/artificial-intelligence-turns-brain-activity-speech
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Figure 2.3: Visualization of Bonn dataset (t-SNE).

recorded by the device of AD-TECH (Racine, WI, USA) with the sampling rate of 512 Hz.

The channel defined focal channel which detected first ictal iEEG signal changes and judged

throw visual by at least two clinical experts, the other channel are defined by non-focal

channel. Then, randomly selected 3,750 pairs samples from focal and non-focal channel,

respectively, total of 15,000 samples (7,500 focal samples and 7,500 non-focal samples) and

each sample is 20 seconds and is processed with the bandpass filter between 0.5 and 150 Hz

by using fourth-orders Butterworth filter. An example of focal and non-focal samples are

shown in Fig. 2.5.

2.2.2 Juntendo Dataset

The other dataset used in this article is Juntendo dataset, which is recorded at Juntendo

University Hospital (Tokyo, Japan). The dataset include four patients who are suffering
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Figure 2.4: Intracranial electroencephalogram (iEEG) acquisition.

from epilepsy caused by focal cortical dysplasia. The dataset consists of the interictal iEEG

recorded for two hours with the sampling rate of 2,000 Hz. The label (focal or non-focal)

is judged by clinical experts through the visual. Four patients (patient-1,2,3 and 4) with

focal (seizure onset zone SOZ) channel number of 3, 3, 7, 9 and randomly select 3, 3, 7, 9

non-focal (non-SOZ) channels, then split the channel data into 20 seconds segments, each

patient has 2,160 2,160 5,040 6,480 samples (half of focal and non-focal). An example

of focal and non-focal samples are shown in Fig. 2.6. This dataset is recorded under

approval from the Juntendo University Hospital Ethics Committee and the Tokyo University

of Agriculture and Technology Ethics Committee.
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Figure 2.5: Samples of Focal and non-focal iEEG (Bern Barcelona Dataset).
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Figure 2.6: Samples of Focal and non-focal iEEG (Juntendo Dataset).
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3. Feature Extraction Methods

The brain disorders are usually diagnosed by visual inspection of EEG/iEEG. For epilepsy,

EEG are used to diagnose and iEEG are used for epileptic focus localization. EEG/iEEG

analysis for assisting in the diagnosis of epilepsy is started in the early [37–42]. Regardless

of the EEG and iEEG diagnostic process, clinical experts need long-term visual diagnosis,

In this article, a diagnostic system is shown in Fig. 3.1, after record a long time iEEG data,

we ask clinical experts to mark a small piece of data and then use this data with label to

train a model and predict the remaining data.

iEEG data recorded from patients.

Data annotation & 
Model training

MODEL

Inference

Figure 3.1: Diagnostic system (Only a small piece of iEEG data (purple dotted box) need
to be labeled, and the prediction (brown dotted box) include the channel and period

information. The red box means that this part of the iEEG data is focal data).
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3.1 Feature Extraction by Filter & Entropy

Considering that epilepsy is caused by abnormal discharge of brain cells, we consider using

entropy [33] as the method of feature extraction, the flowchart of feature extract procedure

is shown in Fig. 3.2.

0.5~4 / 4~8 / 8~13 / 13~30 / 30~80 / 80~150 [Hz]

Sample (20 seconds)

Seven different bandpass filters

Calculate eight different entropies

1

8

Feature matrix (8*7)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.2: Flowchart of feature extract procedure: Entropy & Filter.

3.1.1 Filter

In this method, we extract the features from raw iEEG by using seven different bandpass

filters and eight different entropies, corresponding to different brain states, the bandpass

filters are shown in Table 3.1, which are the commonly used physiological frequency bands.

We use high frequency components (HFO) which shows important roles in iEEG [43]. But

in the Bern-Barcelona dataset, because the data is processed by the bandpass filter between

0.5 and 150 Hz, so the bandpass filters used in Bern-Barcelona dataset are Delta (0.5-4 Hz),
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Theta (4-8 Hz), Alpha (8-13 Hz), Beta (13-30 Hz), Gamma (30-80 Hz) and Ripple (80-150

Hz). The iEEG processed by filter is shown in Fig. 3.3 and Fig. 3.4

Table 3.1: Bandpass filters based on physiological frequency.

Brain signals Frequency [Hz]

Delta 0.5 - 4

Theta 4 - 8

Alpha 8 - 13

Beta 13 - 30

Gamma 30 - 80

Ripple 80 - 250

Fast Ripple 250 - 600

Raw

0.5-4

4-8

8-13

13-30

30-80

80-150

Figure 3.3: Filtered focal signal (Bern Barcelona Dataset).
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Raw

0.5-4

4-8

8-13

13-30

30-80

80-150

Figure 3.4: Filtered non-focal signal (Bern Barcelona Dataset).

3.1.2 Entropy

Eight different entropies are calculated for each iEEG sample following the bandpass

filtering. The entropies are as follows, Shannon entropy, Renee entropy, Generalized

entropy [44] [45], Phase entropy (two types) [46], Approximate entropy [47], Sample

entropy [48] and Permutation entropy [49]. After the calculation of seven (six for Bern-

Barcelona dataset) bandpass filters and eight entropies, we obtain a feature matrix with the

size of 8×7 (8×6 for Bern-Barcelona dataset).

3.2 Feature Extraction by Short Time Fourier Trans-

form

Time frequency analysis is a method often used in signal processing, in this way we can

analysis signal from another perspective. In clinical practice, epileptic spikes are used for
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diagnosis of epilepsy, which can classify and localize the epileptic focus. But in the time

domain, because of various noises in the iEEG, spikes are hard to identify, so we try to

convert it to the frequency domain, making the focal data feature easier to identify. Ordinary

time frequency analysis can not be used for the non-stationary signal because it does not

have time resolution. In the article, we use STFT as another method for feature extraction.

STFT divide the signal into many short segments, and then compute the Fourier transform

for each segment. For a determined signal x(t), the time-frequency domain at each time

point can be obtained by the following (3.1).

ST FT{x(t)}(τ,ω) =
∫

∞

−∞

x(t)w(t− τ)e− jωt dt (3.1)

where w(t) is the Hann window function centered around zero. By using STFT, we can

obtain the frequency information in a short period of time. The STFT samples of Bern-

Barcelona and Juntendo dataset are shown in Fig. 3.5

3.3 Classifier

3.3.1 Classifier of Support Vector Machine

In the classification step, we are chosen several typical supervised learning methods. Support

vector machine (SVM) method [50] mapped the input data to a very high dimensional feature

space, then construct a decision surface in the feature space. In this article the polynomial

kernel is used.

3.3.2 Classifier of Fully Connected Neural Network

The second classifier is fully connected neural network (FCNN) and the parameters are as

follows: the size of input layer is 48 / 56 (Bern-Barcelona / Juntendo), the size of hidden

layer one is 32, the size of hidden layer two is 32, the size of output layer is 2, the loss
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Figure 3.5: Examples of STFT results, left column is Bern-Barcelona data and right
column is Juntendo data. window length is one seconds with 80% overlap. For every

subfigure, the X axis is 0-20 seconds. the Y axis is 0-256 Hz for Bern-Barcelona data and
0-1,000 Hz for Juntendo data, the Y axis is scale by symlog.

function is binary cross entropy, the optimizer is Adam and the batch size is 64.

3.3.3 Classifier of Convolutional Neural Network

The third classifier is convolutional neural network (CNN) and the parameters are as follows:

the size of input image is 8×6 / 8×7 (Bern-Barcelona / Juntendo), the size of convolution

kernel is 3×3, the number of convolutional filters is 32, the size of max pooling is 2×2, the

size of hidden layer is 128, the size of output layer is 2, the loss function is categorical cross

entropy, the optimizer is Adam and the batch size is 64.
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3.4 Experimental Result

In this section, we use Bern-Barcelona and Juntendo dataset to evaluate our method, respec-

tively.

3.4.1 Experimental Result of Bern Barcelona Dataset

In Bern-Barcelona dataset, there are 7,500 focal signals and 7,500 non-focal signals, every

sample is 20 seconds with the sampling rate of 512 Hz. Because the dataset is patient,

channel and time mixed, we use 10-fold cross validation. The results of classification

accuracy by FCNN & Entropy are shown in Fig. 3.6, CNN & Entropy are shown in Fig. 3.7

CNN & STFT are shown in Fig. 3.8 and results are shown in Table 3.2.
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FCNN & Entropy (Bern Barcelona)

Figure 3.6: Result of FCNN & Entropy (Bern Barcelona Dataset), test accuracy vs.
number of epochs. Red line: Average of classification test accuracy (10-folds). Gray area:

Standard deviation.
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Figure 3.7: Result of CNN & Entropy (Bern Barcelona Dataset), test accuracy vs. number
of epochs. Cyan-blue line: Average of classification test accuracy (10-folds). Gray area:

Standard deviation.
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Figure 3.8: Result of CNN & STFT (Bern Barcelona Dataset), test accuracy vs. number of
epochs. Blue line: Average of classification test accuracy (10-folds). Gray area: Standard

deviation.

Table 3.2: Result of SVM & Entropy, FCNN & Entropy, CNN & Entropy and CNN & STFT
(Bern Barcelona Dataset), accuracy [%] over last 10 epochs (Mean ± Standard deviation).

Accuracy [%] SVM, Entropy FCNN, Entropy CNN, Entropy CNN, STFT

Bern Barcelona 80.81 ± 1.60 80.06 ± 1.58 83.80 ± 0.11 88.14 ± 0.12

3.4.2 Experimental Result of Juntendo Dataset

In Juntendo dataset, there are four patients (Patient-1,2,3 and 4), each patient has 2,160

2,160 5,040 6,480 samples (half of focal and non-focal). Currently, for each patient, we

recorded iEEG data for two hours. In order to reduce the workload of clinical experts, we

use the former part of the iEEG data as train data (one hour and forty-five minutes) and last

fifteen minutes iEEG data as test data. The results of classification accuracy by FCNN &
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Entropy are shown in Fig. 3.9, CNN & Entropy are shown in Fig. 3.10 CNN & STFT are

shown in Fig. 3.11 and results are shown in Table 3.3.
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Figure 3.9: Result of FCNN & Entropy (Juntendo Dataset), test accuracy vs. number of
epochs. Four different color lines: Average of classification test accuracy (Five repeated

experiments). Gray area: Standard deviation.
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Figure 3.10: Result of CNN & Entropy (Juntendo Dataset), test accuracy vs. number of
epochs. Four different color lines: Average of classification test accuracy (Five repeated

experiments). Gray area: Standard deviation.
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Figure 3.11: Result of CNN & STFT (Juntendo Dataset), test accuracy vs. number of
epochs. Four different color lines: Average of classification test accuracy (Five repeated

experiments). Gray area: Standard deviation.

Table 3.3: Result of SVM & Entropy, FCNN & Entropy, CNN & Entropy and CNN & STFT
(Juntendo Dataset), accuracy [%] over last 10 epochs (Mean ± Standard deviation).

Accuracy [%] SVM, Entropy FCNN, Entropy CNN, Entropy CNN, STFT

Patient 1 85.93 ± 0.00 90.99 ± 0.68 95.70 ± 0.65 95.73 ± 0.34

Patient 2 84.01 ± 0.00 81.01 ± 1.16 83.11 ± 0.62 92.11 ± 0.20

Patient 3 88.57 ± 0.00 84.74 ± 0.53 89.94 ± 0.51 84.31 ± 1.48

Patient 4 89.14 ± 0.00 90.13 ± 0.34 93.28 ± 0.24 93.04 ± 1.25
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4. Deep Learning Methods

In the CNN model, the early layers following input layers are convolutional layers. In

convolutional layers, the convolution operation is applied to extract feature maps from

the input file of the previous layer, One-dimension convolutional layer: It consists of one-

dimension learnable filters which slide across one-dimension input file like time series.

Two-dimension convolutional layer: A two-dimension filter is convolved across the width

and height of the input file like images. The activation map is obtained by computing the

dot product of the input file and the filter. Then after additive bias and non-linear map by

activation functions, feature maps of the convolutional layer are outputted to passed to the

next layer in the CNN model. Pooling Layer: In the pooling layer, feature maps from the

upper layer are down-sampled to reduce the size, lower the calculation complexity and

prevent overfitting. In CNN, the pooling layer is a common down-sampling method that the

feature maps are separated into many rectangle regions, and then each region features are

obtained. Pooling operation various, for instance, max-pooling operation selects only the

maximum value in each region, while mean-pooling obtains the mean value of each region.

Pooling is the expression of local features and consequently reduces the dimension. Batch

Normalization Layer: Batch normalization layer is applied to normalizes the output of the

previous layer by subtracting batch mean and dividing by batch standard deviation, to fight

the internal covariate shift problem and increase the stability of a neural network.

For the input x obtain from previous layer, the batch normalization layer first calculates

the mean µB and variance σ2
B of a mini-batch B of size m by (4.1) and (4.2). Then
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normalized values xi are calculated as (4.3) where ε is a constant added to the mini-batch

variance for numerical stability. Finally, the xi are shifted and scaled as (4.4) that the

parameters γ and β are to be learned [51] .

µB =
1
m

m

∑
i=1

xi (4.1)

σ
2
B =

1
m

m

∑
i=1

(xi−µB)2 (4.2)

xi =
xi−µB√

σ2
B + ε

(4.3)

yi = γxi +β (4.4)

4.1 One-dimensional Convolutional Neural Network

The developed one-dimension convolutional neural network architecture has 27 layers

consist of the input, one-dimension convolution, max-pooling, dropout, batch normalization,

and fully connected layers. The architecture of 1D-CNN is shown as Fig. 4.1. The convolu-

tion layers following the input layer, perform the convolution operation on the input raw

iEEG signals. The size of the filter and stride are set as three and two, respectively. Feature

maps obtained from the previous convolution process are then successively processed by

the max-pooling layer and batch normalization layer. Before fed into the fully connected

layers, feature maps are flattened to transform dimension. The sigmoid layer is used in the

last layer of the architecture to execute the classification process. In this layer, the input

EEG signals are classified as focal or non-focal.
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Figure 4.1: Model architecture of 1D-CNN.

4.2 Mixed Convolutional Neural Network

In the previous TFCNN architecture, before feeding into the neural network the signals need

to perform extraction and selection of features manually. The most used time-frequency

analysis method like STFT has the capability to extract local information at a one-time
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scale determined by a single filter, limiting the flexibility of the model. To address this

problem, we propose a mixed 1D-2D convolutions model, instead of STFT, we select to

setting one-dimension convolution in the earlier layers, because it is easier to optimize the

parameter configuration when each layer is treated independently, and it also enables using

different input feature maps or receptive field sizes. The architecture of MCNN is shown as

Fig. 4.2. The feature maps from one-dimension convolution layers are reshaped and then

successively fed to two-dimension convolution layers and fully connected layer to perform

further feature extraction and classification.
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Figure 4.2: Model architecture of MCNN.
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4.3 Experimental Result

4.3.1 Experimental Result of One-dimensional Convolutional

Neural Network

Bern Barcelona iEEG Dataset has been used to evaluate our proposed models, In Bern-

Barcelona dataset, there are 7,500 focal signals and 7,500 non-focal signals, every sample is

20 seconds with the sampling rate of 512 Hz. Because the dataset is patient, channel and

time mixed, 10-folds cross-validation is used. In the training stage, the network has been

trained to recognize two classes of iEEG signals of focal and non-focal signals. It requires a

large number of computational overhead to use one iteration of full training set to perform

each epoch, hence stochastic gradient descent (SGD) training is used in this paper. In each

epoch of the training, the 13,500 data are randomly divided into 100 batches, which are

fed into the network in turn. Training performance was monitored during the training stage

until getting the best accuracy on the training set with minimum train loss. The accuracy of

the model is shown in Fig. 4.3 and Table 4.1.

4.3.2 Experimental Result of Mixed Convolutional Neural Net-

work

For MCNN model, we also use 10-folds cross-validation method. The accuracy of the

model is shown in Fig. 4.4 and Table 4.1. In order to analyze the model performance more

comprehensively, we analyzed the confusion matrices for MCNN model, the result is shown

in Table 4.2.

Table 4.1: Result of 1D-CNN & MCNN (Bern Barcelona Dataset), accuracy [%] (10-folds)
over last 10 epochs (Mean±Standarddeviation).

Model Accuracy [%]

1D-CNN 86.39±0.069
MCNN 92.80±0.083
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Figure 4.3: Result of 1D-CNN model (Bern Barcelona Dataset), test accuracy vs. number
of epochs. Red line: Average of classification test accuracy (10-folds). Gray area: Standard

deviation.

Table 4.2: Confusion matrices of classification accuracy for MCNN (Bern Barcelona
Dataset).

Focal (Predict) Non-focal (Predict)

Focal (True) 687 52
Non-focal (True) 56 705

Precision (%) Recall (%) Accuracy (%)
92.5 93.0 92.8
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Figure 4.4: Result of MCNN model (Bern Barcelona Dataset), test accuracy vs. number of
epochs. Red line: Average of classification test accuracy (10-folds). Gray area: Standard

deviation.
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5. Weakly Supervised Learning Meth-

ods

Up to now, by using supervised learning, we achieved high performance in epileptic focus

localization tasks. However, the result is dependent on a large amount of data and labels. It

may be available in other fields, but in the medical field, the acquisition of high-quality data

with the label is very difficult and expensive. Aiming at the practical problems, we used

the PU learning for epileptic focus localization. In the previous chapters, both traditional

supervised learning and end-to-end neural network models. Our input is a lot of data and

corresponding tags. This requires us to do a lot of labeling work beforehand. Obviously, in

the medical field, this is difficult to achieve. For epilepsy iEEG data, current clinical experts

are labeled by visual judgment. This has a need to reduce the workload of clinical expert

data annotation.

In the figure of Performance comparison of different learning models 5.1, we compared

several common learning models and there is a balance between model performance and

data annotation cost. There is a balanced approach between model performance and data

tagging: semi-supervised learning. The difference between supervised learning and semi-

supervised learning is shown in Fig 5.2. Compared to supervised learning, semi-supervised

learning does not require all data to be labeled. It only requires that some of the data in each

class of data have the label. This greatly reduces the workload of annotation for clinical

experts. In order to further improve the work of clinical experts, we use PU learning. In
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contrast to semi-supervised learning, PU learning requires only one class of data with label.

This further reduces the amount of annotation work. Below we will detail the model of the

PU learning method, mathematical proof and experimental results.
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Figure 5.1: Performance and data annotation cost comparison of different learning models
(Include Supervised learning, Positive Unlabeled learning, Semi-supervised learning and

Unsupervised learning).

5.1 Positive Unlabel Learning

There is a definition of PU learning [52]: Given a set of examples of an particular class P

(called the positive class) and a set of unlabeled examples U, which contains both class P

and non-class P (called the negative class) instances, the goal is to build a binary classifier

to classify the test set T into two classes, positive and negative, where T can be U.

In the Fig. 5.3, the left part is the traditional model of supervised learning, we have two

types of data and every data has label, in the right part, we have two kind of data, one is a
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Figure 5.2: Model comparison of supervised learning and semi-supervised learning.

small amount of positive date with label, the other is data without any label.

There are some similarities between the PU learning and semi-supervised learning,

which is also used in medical field [53–55], but unlike to the semi-supervised learning, PU

learning only need give label to one kind of data.

According to how to solve the problem of a kind of data without label, the PU learning

can be divided into two categories. One category is try to find the reliable negative data (RN)

data from unlabeled data, then by using the postivite data and RN data, the PU learning can

be regarded as a binary classifier [56] [52] [57]. The other category is regarding unlabeled

data as negative data, and the weight of negative data is adjusted in the loss function [58–60],

our article uses this method. Detailed description and mathematical are as follows:

Problem settings: Let x be the input vector which is calculate by filter and entropy or

STFT from a 20 seconds iEEG data, and y ∈ {±1} be the class label, in the article, +1

delegate focal data and −1 delegate non-focal data. The class conditional distributions of

focal data and non-focal data are denoted by pp(x) and pn(x) respectively, and pp(x) and

pn(x) are defined by

pp(x) = p(x | y =+1),

pn(x) = p(x | y =−1).
(5.1)
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Figure 5.3: Model comparison of supervised learning and PU learning.

The prior probabilities for focal data and non-focal data are denoted by πp = p(y =+1)

and πn = p(y =−1) and πn = 1−πp, in this article, the πp is assumed known in advance.

The marginal distribution of unlabeled data (i.e. the distribution of focal and non-focal data)

is defined by

p(x) = πp pp(x)+πn pn(x). (5.2)

Risk estimators: we use the empirical unbiased risk estimator that is proposed by

[61] [62] [63], the g(·) denotes the binary classification function and `(g(x),±1) is the

loss function. Therefore, the R̂+
p (g) and R̂−n (g) denotes the empirical risks for focal and

non-focal data, respectively. The empirical risk for focal data, i.e., R̂+
p (g) is calculated by

(5.3) and the empirical risk for non-focal data, i.e., R̂−n (g) is calculated by (5.4), then the

risk estimator is defined by (5.5).

R̂+
p (g) = Exvpp(x)`(g(x),+1), (5.3)

R̂−n (g) = Exvpn(x)`(g(x),−1). (5.4)

R̂pn(g) = πpR̂+
p (g)+πnR̂−n (g), (5.5)
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Because we only have the label of focal data, the distribution of non-focal data is

unknown. in equation (5.4), R̂−n (g) can not be computed straightforwardly. However, by

using the equation (5.2), the distribution of non-focal data can be represented by

πn pn(x) = p(x)−πp pp(x). (5.6)

Hence, the empirical risk for non-focal data can be computed by

πnR̂−n (g) = R̂−u (g)−πpR̂−p (g), (5.7)

where R̂−u (g) and R̂−p (g) are the empirical risks under the distribution of unlabeled data and

focal data, respectively, which are defined by

R̂−u (g) = Exvp(x)`(g(x),−1),

R̂−p (g) = Exvpp(x)`(g(x),−1).
(5.8)

Finally, the risk estimator in equation (5.5) can be approximated indirectly by

R̂pu(g) = πpR̂+
p (g)+ R̂−u (g)−πpR̂−p (g). (5.9)

In general, g(x) can be any classifier functions, such as linear discriminative analysis

(LDA), SVM, FCNN and so on. Due to the recent great success of neural networks, in this

study, we employ a three layers FCNN as the binary classifier function g(x). Based on the

objective function shown in equation (5.9), we can thus easily employ the BP algorithm to

learn the deep neural network for PU problem.

5.2 Experimental Result

We use Bern Barcelona dataset and Juntendo dataset to evaluate PU learning, respectively.
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5.2.1 Experimental Result of Bern Barcelona Dataset

we use Bern-Barcelona dataset to evaluate our method. In Bern-Barcelona dataset, there

are 7,500 focal signals and 7,500 non-focal signals, every sample is 20 seconds with the

sampling rate of 512 Hz. Because the dataset is patient, channel and time mixed, we use

10-fold cross validation. In PU learning experimental, 2,142 focal samples are selected as

labeled data. the results of classification accuracy are shown in Fig. 5.4 and Table 5.1.
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Figure 5.4: Result of PU learning (Bern Barcelona Dataset), test accuracy vs. number of
epochs. Yellow line: Average of classification test accuracy (10-folds), Gray area: Standard

deviation.

Table 5.1: Result of PU learning (Bern Barcelona Dataset), accuracy [%] over last 10
epochs (Mean ± Standard deviation).

Accuracy [%] FCNN & Entropy PU learning

Bern Barcelona 80.81 ± 1.60 76.91 ± 0.22
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5.2.2 Experimental Result of Juntendo Dataset

In Juntendo dataset, there are four patients (Patient-1,2,3 and 4), each patient has 2,160

2,160 5,040 6,480 samples (half of focal and non-focal). The first 315 minutes as train data,

and the other as test data. For each patient, we recorded iEEG data for two hours. In order

to reduce the workload of clinical experts, we use the former part of the iEEG data as train

data (one hour and forty-five minutes) and last fifteen minutes iEEG data as test data. In

the PU learning method, we randomly select 300, 300, 700, 900 (patient 1-4) focal sample

with label, and all the other data are treated as unlabeled data, the results of classification

accuracy are shown in Fig. 5.5 and Table 5.2.
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Figure 5.5: Result of PU learning (Juntendo Dataset), test accuracy vs. number of epochs.
Four different color lines: Average of classification test accuracy for each patient (Five

repeated experiments). Gray area: Standard deviation.
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Table 5.2: Result of PU learning (Juntendo Dataset), accuracy [%] over last 10 epochs
(Mean ± Standard deviation).

Accuracy [%] FCNN & Entropy PU learning

Patient 1 90.99 ± 0.68 84.09 ± 1.35
Patient 2 81.01 ± 1.16 76.48 ± 0.64
Patient 3 84.74 ± 0.53 82.19 ± 0.43
Patient 4 90.13 ± 0.34 85.47 ± 0.37
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6. Data Augmentation Methods

In the aforementioned methods achieve quite good performance, but there is still a problem,

the high performance relies on a massive amount of high quality labeled data. In the medical

field, both a massive number of data and high-quality labels are often difficult to obtain. To

address this problem, we get inspiration from the field of computer vision. In the field of

computer vision, data augmentation is a common method of use. Data augmentation is a

strategy to increase the amount and diversity of data available for training models without

the need to collect new data, therefore we also avoid the data annotation workload. In

this paper, we introduce the data augmentation method originally presented in [64] [65]

to generate artificial data. The time-domain data is converted to the frequency domain by

discrete cosine transform (DCT), and new artificial data is generated by combining different

frequency bands from different data and converted back to time-domain data. With the help

of the data augmentation method, the result of the model has been improved by about 3%.

Our results show that data augmentation is also an effective method to improve performance

for time-domain data (iEEG) when there is only limited data.

6.1 Discrete Cosine Transform Based Data Augmen-

tation Methods

To improve the classification performance, we introduce a DCT-based augmentation method,

following the same strategy already used in [64, 65]. DCT is often used in signal process-
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ing because it has a strong energy compaction property. Similar to the Discrete Fourier

Transform (DFT), the DCT is a Fourier-based transform, but using only the cosine function

(real part of the complex exponential function). Using the DCT, the time domain signal

can be split into a sum of cosine functions ranging from-high frequency to low-frequency.

On the other hand, the cosine functions can be reconstructed with the inverse discrete

cosine transform. Our model constructs a synthetic sample by exploiting information in the

transformed domain which can be specifically described as follows.

Given a random batch of N independent and identically distributed (i.i.d.) samples

{xi ∈ Cm}N
i=1 drawn from an unknown distribution D , we generate a synthetic sample g by

the following model

g =
N

∑
i=1

Ψi(xi) ∈ Cm. (6.1)

By restricting {Ψi(·)} to be linear functions, the synthetic sample g can be linearly con-

structed from original samples {xi}. We further assume each Ψi is the compound of a

sample specific linear transformation Fi and a sample independent (inverse) transformation

F−1 as Ψi = F−1 ◦Fi, ∀i = 1,2, · · · ,N. For example, Fi can model the process of extract-

ing several DFT (or DCT) coefficients from sample xi, whereas F−1 models the inverse

DFT (or inverse DCT) on the extracted coefficients. In our setting, we let the length m of

sample xi satisfy m = ∑
N
i=1 mi, where mi is the width of a segmental coefficients extracted

from sample xi in the transformed doamin. Without loss of generality, let F denote a unitary

matrix representing some linear transformation (like DFT/DCT) which has orthogonal rows

f j ∈ C1×m, j = 1,2, · · · ,m:

F = [f1; · · · ; fm+
i−1

; fm+
i−1+1; · · · ; fm+

i
; fm+

i +1; · · · ; fm] ∈ Cm×m,

where m+
i = ∑

i
k=1 mk, i = 1,2, · · · ,N. Then, Fi can exact coefficients of the i-th segment by

letting

Fi = [0; · · · ;0; fm+
i−1+1; · · · ; fm+

i
;0; · · · ;0] ∈ Cm×m.
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Hence, Model (6.1) can be specified as g = ∑
N
i=1 FHFixi.

Theorem 1 Let Ex and Σx be the expectation and the covariance matrix of D , respectively.

Then it holds that

(I) The expectation of g satisfies E[g] = Ex.

(II) The covariance Σg of g satisfies:

Σx−Σg = FH( ∑i6= j ∑ j FiΣxFH
j )F. (6.2)

Theorem 1 indicates the data augmentation process does not change the expectation of

the unknown distribution D and the shift of covariance has an explicit expression specified

by the transformation F. Note that since it is impossible to exactly estimate a generally

full-rank covariance matrix Σx from very limited random samples {xi}, the phenomenon of

covariance-shift is unavoidable in principle.

The data augmentation proposed workflow Fig. 6.1 is as follows: (1) Randomly

choose seven signals (channels) from the dataset (focal and non-focal signals are operated

separately) and apply the transform F (DCT); (2) Using the frequency bands (Delta: 0-4,

Theta: 4-8, Alpha: 8-13, Beta: 13-30, Gamma: 30-80, Ripple: 80-150 and Fast Ripple:

150 ∼), extract one frequency band of each of the decompositions, from highest to lowest

frequencies, and merge the seven extracted parts (frequency bands) to create a new artificial

signal. (3) Artificial signals in frequency domain will be transformed back to time domain

applying the inverse transform F−1 (IDCT); (4) Finally, the artificial signals are processed

using a (three-order Butterworth) bandpass filter between 0.5 and 150 Hz.
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Figure 6.1: Flow chart of the data augmentation method.

6.2 Experimental Result

In our model, we used three types of layers: 1D-CNN layer, pooling layer and fully

connected layer. The pooling layer is used to shorten signal length, highlight features and

reduce calculation time In addition,it can improve spatial invariance to some extent, such as
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translation invariance, scale invariance and deformation invariance. Fully connected layer is

used as a decision layer at the end of the network, which can synthesize all the features to

generate a conclusion. Our model architecture is as follows: Conv (kernel size = 1×10,

number = 32, strides = 1), Conv (1×10, 64, 1), Maxpool (pool size = 1×5, strides = 4),

Conv (1 ×10, 64, 1), Maxpool (1×5, 4), Conv (1 ×10, 32, 1), Maxpool (1×5, 4), fully

connected, a total of eight layers.

First, the original Bern-Barcelona dataset is used to evaluate the 1D-CNN model using

a 10-fold cross-validation strategy. These results, shown in Fig. 6.2, will be used with

two purposes: (i) to be compared with results already published using the same dataset but

different classification models; and (ii) as a benchmark for comparison when using data

augmentation technique.

Results shown in Fig. 6.2 have a mean test accuracy of 89.28% with a standard deviation

of 0.91, outperforming all works already published using the same datased. Table ??

provides a comparison between the previous work and the proposed method.

In real-world scenarios, it is sometimes difficult to obtain a large amount of medical

data with high quality labels, and we often end up with a reduced dataset. To explore this

problem, we randomly select a smaller set of test and training data from the Bern-Barcelona

dataset, and generated artificial data for the training step, with the aim of investigating

whether we can still obtain a good classification model. To do that, we randomly selected

3,000 samples (1,500 focal and 1,500 non-focal signals) and 1,000 samples (500 focal

and 500 non-focal signals) as the raw training set and test set, respectively (there is no

intersection between the two sets). Using the data augmentation method, we generated

3,000, 6,000 and 9,000 artificial data (artificial focal/non-focal data were generated only by

focal/non-focal data) from the raw training set. Then, we trained the 1D-CNN model with

raw training set combining different amounts of artificial data. The results are shown in Fig.

6.3 and average test accuracy is shown in Table 6.1.

From these results, we observe that having a small dataset decreases the test accuracy
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Figure 6.2: Results of the 1D-CNN model with Bern-Barcelona dataset, test accuracy vs.
number of epochs. Red line: Average of classification test accuracy (10-folds), Gray area:

Standard deviation.

more than 7% using our proposed 1D-CNN model. However, when applying the data

augmentation technique, the test accuracy increases gradually up to 83.91% when using

9,000 artificial data together with the original 3,000 raw data. Note that this result is above

or similar to most of the ones reported previously but using less than 50% of the real data.

In summary, we explore a deep learning method to avoid the computationally demanding

feature extraction step of the classical machine learning methods. Therefore, the 1D-CNN

method is applied for the epileptic focus localization prob- lem. The proposed approach

can avoid cumbersome feature extraction processes and experimental results show that this

approach is effective for this application. In addition, con- sidering the limited amount of

medical data in many real-life scenarios, we proposed a data augmentation method. Us- ing

artificially generated data, model performance improves without increasing the workload
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Figure 6.3: Results on different training set, test accuracy vs. number of epochs (using the
1D-CNN model).

of manual data labeling by a specialist. With this approach, supervised learning becomes

more useful in medical applications such as epileptic focus localization, and opens the door

for specialists to label a much smaller set of data, leaving the automatic system to gener-

ate artificial data with the adequate characteristics to train a system and generate a suitable

model.
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Table 6.1: Average test accuracy over the last ten epochs of 1D-CNN model with different
training set.

Training set Accuracy [%] (Mean & Std)

Raw 3k 81.52 (0.67)
Raw 3k & Artificial 3k 82.71 (0.32)
Raw 3k & Artificial 6k 82.98 (0.44)
Raw 3k & Artificial 9k 83.91 (0.32)



49

7. Conclusion and Future Work

7.1 Discussion and Contribution

In the article, in order to reduce the workload of clinical expert, a diagnostic system and

several methods are proposed, In the step of extract the feature, we use two kinds of feature

extraction methods, Either filter and entropy method or STFT method, we not only care

about the effect of feature extraction, but also ensuring the physical interpretation and

make it interpretability to clinical experts, which is the key point in clinical practice. The

bandpass filters we selected are commonly used physiological frequency bands, which

are interpretability to clinical experts. Because epilepsy is caused by abnormal discharge

of brain cells, and entropy is a method of energy calculation, which is just suitable for

measuring epileptic brain signals. Because of the diagnostic role of spikes in epilepsy, we

try to use STFT for time-frequency analysis.

In the classification step, we compared several typical supervised learning methods.

From the results, we can see that the more complex network model shows better performance.

Although the supervised learning method show a good performance, we want to further

reduce the workload of clinical experts. Thus, we introduce the PU learning method for

classification. In this way, we can training a classifier only by using a small amount of

labeled data (focal signal) and a large amount of unlabeled data (focal and non-focal signal),

PU learning shows some advantages, but at the same time it has some shortcomings. It

works well with the balancing dataset, and needs to know the proportion of the positive
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data in the unlabeled data. These factors limit their application in the real world. In order

to further practicalize the method, we also proposed a data enhancement method, which

generates a large amount of artificial data based on a small amount of data, and uses this

method to improve the performance of the model.

Some article results on the detection of epilepsy focus as shown in Table 7.1, The results

in the table show that our method can achieve good performance. And we use the method

of weakly supervised learning and data augmentation. The practicality of the method can be

further promoted.

Table 7.1: Localization results of focal and non-focal iEEG data of published articles by
using the Bern-Barcelona Dataset.

Articles Method proposed Accuracy in [%]

[25] SVM & DWT 83.07

[29] LS-SVM & EMD, Entropy 87

[17] LS-SVM & DWT, Entropy 84

[23] KNN & EMD-DWT, Entropy 89.4

[66] LS-SVM & TQWT, Entropy 84.67

[32] SVM & BEMD 86.89

MCNN 92.8

7.2 Future Work

Future work focuses on two aspects. First, currently our methods are sensitive to individual

differences, we need clinical experts to partially make label for each new patient. In the

future we want to find a method which can across different patients. In the model, we plan

use methods to analyze the common characteristics and individual differences of different

patients. This way we can improve the generalization of the model for new patient data.

Second, in the methods so far, one feature extraction is used each time. In the hospital’s
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diagnosis and treatment, doctors often use a variety of examination results to comprehensive

diagnosis. It is planned to use a combination of multiple features in the future. In order

to make the algorithm more practical, we need to propose targeted methods to solve the

problem of clinical data imbalance.
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