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Abstract 

Cyclamen is one of the world’s best-selling potted plants due to better ornamental traits 

and simple cultivation management. Most of the current ornamental cyclamen cultivars are 

obtained from a single wild species, purple flower Cyclamen persicum (C. persicum, 2n = 

2x = 48), through natural variation and the hybridization of mutants. These cultivars are 

always rich in colors, mainly because of an important group of flavonoids, anthocyanin. 

Investigate the molecular mechanism of cyclamen flower color formation, get the 

information about genes related to anthocyanin biosynthesis is of great significance for 

molecular breeding of new varieties with novel colors.  

Color mutants are considered to be good materials for studying the function of genes 

associated with anthocyanin synthesis. Cyclamen persicum ‘Strass’(STR) is one cultivar of 

C. persicum, which has larger red flowers than the original species. The major anthocyanin 

component in STR petals has been changed from malvidin 3,5-diglucoside (Mv3,5dG, a 

major anthocyanin in C. persicum) to peonidin 3-O-neohesperidoside (Pn3Nh). Meanwhile, 

the flow of synthesize Pn3Nh and Mv3,5dG is partly controlled by flavonoid 3’-

hydroxylase (F3’H) and flavonoid 3’,5’-hydroxylase (F3’5’H) respectively. To find out 

what caused the change in STR flower colors, we isolated the candidate F3’H genes, which 

are highly correlated with color mutant, from STR petals and obtained three open reading 

frames (ORFs). The amino acid sequences deduced from these genes are highly similar to 

F3’H protein in other plants, and have conserved motifs of F3’H protein. The results of 

real-time PCR showed that the transcription level of F3’Hs were the highest at the early 

stage of flower development, and gradually decreased as the flowers bloomed. The 

expression of F3’Hs were also detected in leaves. When compared the expression of F3’H 

in STR and C. persicum, and the results showed that F3’H expressed much stronger in STR 
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than that in C. persicum. All the results suggested F3’H is likely taking an active role in 

pigmentation in STR. We also constructed the recombinant expression vector pET21a-

STRF3’H1, pET21a-STRF3’H2a, pET21a-STRF3’H2b and determined the best conditions 

for protein induction, which provided a basis for analyzing the function of STRF3’H gene 

and identifying the enzyme activity of STRF3’H in vitro. 

In order to enhance the commercial value of the ornamental cyclamen, researchers are 

also committed to cultivating cyclamen with various colors and fragrances. The wild 

species, Cyclamen purpurascens (C. purpurascens), which has a sweet fragrance, had been 

applied to horticulture breeding of cyclamen. Interestingly, all the F1 progenies of the cross 

between C. purpurascens and C. persicum cultivars contain 3,5- diglucoside type 

anthocyanins in petals, same to C. purpurascens (the major pigment is malvidin 3,5-

diglucoside) (Takamura et al. 2005). Anthocyanin 5-O-glucosyltransferase (A5GT) is 

responsible for glycosylation at the 5-O-position to generate more stable 3,5-diglucoside 

type anthocyanins. It is indicated that the expression of A5GT in petals is dominant, even 

in the cross of C. purpurascens and C. persicum cultivars. This time we isolated two 

complete ORFs of A5GT genes from C. purpurascens. By analyzing the deduced amino 

acid sequences, phylogenetic relationships and expression patterns, we concluded that 

Cpur5GT2 is more likely to encode a typical A5GT, so a prokaryotic expression vector of 

Cpur5GT2 was constructed and the enzyme assay was performed in vitro. The outcomes 

revealed that Cpur5GT2 has a valid enzymatic activity for anthocyanin glycosylation and 

may make positive contribution to cyclamen coloration. 

 

Keywords: Cyclamen; pigment; anthocyanin; flower color; flavonoid 3’-hydroxylase; 

anthocyanin 5-O-glucosyltransferase 
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Chapter 1 Introduction 

Flower is one of the most attractive organs of ornamental plants, and flower color is 

one of the most direct ornamental characters. Novel flower color can not only enhance the 

ornamental value of plants, but also bring potential commercial value. The formation of 

plant flower color mainly depends on three types of plant pigments, carotenoids, flavonoids 

and betalains. Carotenoids include carotene and xanthophyll, which are fat-soluble 

pigments that exist in the cytoplasm in a deposited or crystalline state, and usually causing 

the pigments in the plants to be yellow, orange, or red (Tanaka et al. 2008). Betaines are 

water-soluble nitrogen-containing pigments that exist in most families of the 

Caryophyllales and a class of fungi. At present, the known betaines can be divided into the 

yellow etaxanthins and red betacyanins (Strack et al. 2003). Flavonoids are widely 

distributed in plants and are secondary metabolites of water-soluble aromatics. They are 

mostly found in cell vacuoles (Tanaka et al. 2008). When the light passes through the petal 

pigment layer, part of it is absorbed, and part is reflected by the sponge tissue, and then 

enters people’s eyes through the pigment layer, forming the impression of flower color. 

The appearance of flower colors is closely related to the types and contents of pigments, 

and is also affected by the pH of vacuoles, types and concentrations of metal ions, co-

pigments and environmental factors. 

1.1 Anthocyanin 

1.1.1 The structure of anthocyanin 

Anthocyanin, a group of flavonoids, is widely found in the petals, leaves, pericarp and 

seed coat of plants, and is one of the important pigments in plants. Anthocyanin is a water-

soluble pigment with acidic and basic groups, which is well soluble in more polar solvents. 
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Anthocyanins exist in different structural forms in different pH environments. Usually, they 

are stable at low pH, and their stability decreases rapidly at high pH and even degrades. 

The presence of anthocyanins gives plants a variety of colors, which enriches the 

ornamental value of plants and also plays pushing role in the reproduction and evolution of 

species, for examples, attract pollinators and seed dispersers (Huits et al. 1994), protect 

plants from UV radiation (Bieza et al. 2001), participate in the synthesis of plant hormones 

(Winkler et al. 1995), against phytopathogens as the phytoalexin (Nicholson et al. 1992; 

Dixon et al. 1999) and so on.  

Anthocyanin is a kind of compounds made by anthocyanidin binding with glycosides. 

The basic structure is the C6-C3-C6 carbon framework, that is, two aromatic rings (A ring 

and B ring) are connected by a central three-carbon bridge, which often forms a heterocyclic 

ring (C ring) (Figure 1-1). Different types of substituents at the 3’ and 5’ positions determine 

the type and color of the anthocyanin. The hydroxyl groups at the 3, 5, and 7 position always 

combine with different types and numbers of glycosyl to form glycosides. The modification 

of anthocyanin includes hydroxylation, methylation, glycosylation and acylation. In higher 

plants, pelargonidin, cyanidin and delphinidin are the most basic anthocyanidins, peonidin 

is formed by methylation of the R1 group of the cyanidin B ring, petunidin and malvidin 

are formed by the methylation of delphinidin in R1 and R2 groups, respectively. As the 

number of hydroxyl groups on the anthocyanin B ring increases, the blue tone gradually 

deepens; as the degree of methylation of hydroxyl group on B ring increases, the blue tone 

gradually weakens and the red tone gradually strengthens. As the degree of methylation 

deepens, the redshift becomes more obvious (Winkel-Shirley 2001; Honda et al. 2002). 

Glycation will cause the anthocyanin color redshift, while acylation will cause the 

anthocyanin color blue shift (Tanaka et al. 2008). 
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1.1.2 The biosynthetic pathway of anthocyanin 

The anthocyanin biosynthetic metabolic pathway is a branch of the flavonoid pathway 

and one of the secondary metabolic pathways that have been well studied in higher plants 

(Holton and Cornish, 1995; Mol et a1., 1998) (Figure 1-2). Phenylalanine is the direct 

precursor of flavonoid biosynthesis. Anthocyanins are synthesized from phenylalanine in 

the cytoplasm through a series of enzymatic reactions, followed by different hydroxylation, 

glycosylation, methylation and acylation, and finally transported to vacuoles for collection. 

It has been proposed that enzymes related to anthocyanin synthesis form supramolecular 

complexes through protein-protein interactions and anchor in the endoplasmic reticulum 

(ER) membrane (Grotewold 2006a). The synthesis of anthocyanin skeleton is mainly 

divided into three stages: The first stage is from phenylalanine to 4-coumayl CoA, which 

is regulated by phenylalanine lyase (PAL) and cinnamic acid hydroxylase (C4H), which is 

also a stage shared by many secondary metabolisms. The second stage is from 4-coumayl 

CoA and malonyl CoA to dihydroflavonol, which is the key reaction of flavonoid 

metabolism. This stage provides the precursor substance naringenin for the synthesis of 

anthocyanin glycosides, auxiliary pigment flavonoids and flavonols. At different sites of 

naringenin, the hydroxylation reaction can be catalyzed by three different enzymes, 

flavanone 3-hydroxylase (F3H) catalyzes hydroxylation at C3 position; flavonoid 3’-

hyroxylase (F3’H) catalyzes hydroxylation at C3’ position, flavonoid 3’,5’-hyroxylase 

(F3’5’H) catalyzes hydroxylation at C3’ and C5’ position, thus, dihydrokaempferol (DHK), 

dihydroquercetin (DHQ) and dihydromyricetin (DHM) were produced respectively. The 

third stage is under the regulation of dihydroflavonol reductase (DFR) and anthocyanin 

synthase (ANS/LDOX), the colorless dihydroflavonol are converted into leuco-

anthocyanins. After the synthesis of the backbone of anthocyanins is completed, the 
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diversity modification will be carried out. These modifications depend primarily on UDP‐

glycose‐dependent glycosyltransferase (GT), anthocyanin acyltransferase (AT) and 

methyltransferase (MT). Each site undergoes glycosylation, acylation and methylation 

modification to form a variety of different anthocyanin types, which make plants show 

various colors (Winkel-Shirley, 2001). Finally, anthocyanins are transported to the vacuole 

for storage and play a physiological role with the assistance of vacuolar transport proteins, 

such as glutathione transferase (GST). The anthocyanin biosynthetic pathway in higher 

plant can be divided into three synthetic branch pathways: pelargonidin-based pathway 

(orange red to brick red), cyanidin-based pathway (pink to red) and delphinidin-based 

pathway (violet to blue). And these three pathways do not necessarily coexist in the same 

plant, for example, many plants in nature do not have blue flowers, due to the lack of 

delphinidin branching pathway, such as carnation and rose (Holton and Tanaka 1994; Mol 

et al. 1999; Yoshida et al. 2009); cymbidium and petunia lack brick red/orange varieties 

because they do not have pelargonidin-based anthocyanins (Johnson et al. 1999; Forkmann 

and Heller 1999). 

 
Fig 1-1.  The basic structure of anthocyanin.  

R1=R2=H pelargonidin; R1=OH, R2=H cyanidin; R1=R2=OH delphinidin; R1=OCH3, 

R2=H peonidin; R1=OCH3, R2=OH  petunidin;  R1=R2=OCH3 malvidin 
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Fig 1-2.  The Biosynthetic pathway of anthocyanins in higher plants.  
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1.2 The main factors related to anthocyanin-based flower color 

formation 

1.2.1 The structural genes involved in anthocyanin biosynthesis 

In ornamental plants with anthocyanin as the main pigment, the type and content of 

anthocyanin are the main factors that determine the final appearance of anthocyanin. 

Different kinds of anthocyanins show different colors, and when the content of the same 

anthocyanin changes, the color will change accordingly. For example, when the content of 

cyanidin gradually increases, the color gradually changes from light red to dark red. This 

is usually related to the expression of structural genes and/or regulatory factors related to 

anthocyanin biosynthesis (Nakatsuka et al. 2005).  

The first enzyme in the anthocyanin synthesis pathway is CHS. The CHS gene was 

first isolated from parsley by Reimold et al. (1983), which was also the first gene isolated 

from the flavonoid biosynthetic pathway. Now CHS has been isolated from various of 

ornamental plants, such as arabidopsis (Saslowsky et al. 2000), petunia (Morgret et al. 

2005), herbaceous peony (Zhao et al. 2012b). The expression level of CHS gene can affect 

the display of plant flower color. CHS gene mutation causes Torenia fourneiri flower color 

to change from blue to white and gray (Fukusaki et al. 2004). Inhibited expression of CHS 

gene is the main cause of the white stripes in petunia ‘Red Star’ flowers (Koseki et al. 2005). 

CHI catalyzes the formation of colorless naringenin. This reaction can proceed 

spontaneously, but the reaction efficiency can be increased by 7 to 10 times in the presence 

of CHI (Jez et al. 2000). CHI and CHS play an irreplaceable role in the metabolic branched 

pathways of flavonoid, flavonol, flavone, procyanidins and anthocyanin synthesis. In 

Arabidopsis thaliana, CHI is a unique enhancer in the flavonoid pathway, and it functions 
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with TT5 to promote the production of flavonoids (Jiang et al. 2015). When the expression 

level of CHI gene decreases, chalcone and its derivatives will accumulate, and anthocyanin 

biosynthesis will be hindered. The inactivation of CHI from onion (Allium cepa) leaded to 

accumulate of yellow chalcone derivatives, and resulted in a golden mutation in the bulbs 

of the onion (Kim et al. 2004). Suppressing the expression of CHI in tobacco will affect the 

accumulation of flavonoids in petals and pollen, resulting in color changes (Nishihara et al. 

2005).  

F3H catalyzes the hydroxylation of the C3 site of flavanones and synthesizes 

dihydroflavonol, which is considered to be the central point of the anthocyanin biosynthetic 

pathway. The cDNA of the F3H gene was originally cloned from Antirrhinum majus 

(Martin et a1., 1991). Loss of F3H function will hinder the conversion of flavanone to 

dihydroflavonol, thereby affecting the accumulation of anthocyanins. The mutation of F3H 

(Transparent Testa 6) in Arabidopsis thaliana leads to a decrease in the pigments in the 

seed coat, which turns the color of the seed coat gray and white (Peer et al. 2001). Due to 

the insertion of the retro transposable element TORE1, the ToreniaF3H gene was not 

expressed in white-flowered torenia, which resulted in a decrease in anthocyanin levels in 

petals (Nishihara et al. 2014). 

 F3’H and F3’5’H are belonging to cytochrome P450 enzymes (CYP450s) family that 

regulate hydroxylation of the B-ring. The degree of B-ring hydroxylation has the greatest 

effect on anthocyanin-based flower color.  

DFR catalyzes DHK, DHM and DHQ to produce corresponding colorless 

leucoanthocyanidin. In addition, these three products (DHK, DHM and DHQ) can further 

generate flavonols under the catalysis of flavonol synthase (FLS). The competition between 

FLS and DFR can affect the trend of flavonoid metabolism, thereby changing the flower 

color. The overexpression of DFR increases the anthocyanin content in transgenic tobacco 
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lines and produces red flower, on the contrary, overexpression of FLS promotes the 

accumulation of flavonols and produces white flowers (Luo et al. 2016). The DFR of some 

plants has strong substrate specificity, which is one of the reasons why plants show different 

colors. DFR from Petunia cannot catalyze the reduction of DHK to leucopelargonidin, so 

there is no pelargonidin-based pigment accumulation, and there is no orange-red petunia 

flower in nature (Forkmann and Ruhnau 1987).  

ANS is responsible for catalyzing the oxidation of colorless 1eucoanthocyanidins to 

produce colored anthocyanidins, which are essential for the formation of plant colors. 

Mutations in ANS genes can also cause anthocyanins to fail to accumulate normally. 

Gentian ANS gene mutation causes its flowers to change from pink to white (Nakatsuka et 

al. 2005). ANS also affects the synthesis of anthocyanins along with upstream and 

downstream genes. The flowers of forsythia are yellow because of lack of anthocyanins, 

and mainly accumulate carotenoid xanthophylls. After transformed AmDFR (Antirrhinum 

majus) and MiANS (Matthiola incana) into forsythia (Forsythia × intermedia cv ‘Spring 

Glory’, the petals of the transgenic plants were detected with carotene as well as cyanidin-

based anthocyanidins, and the flower present a novel bronze-orange color (Rosati et al. 

2003). 

Anthocyanidin is a very unstable substance. Through glycosylation, the unstable 

anthocyanin is converted into stable anthocyanin, and the maximum absorption spectrum 

is towards the ultraviolet end. 3GT/UFGT is the last key enzyme in the anthocyanin 

synthesis pathway. It catalyzes the glycosylation reactions that occur in the anthocyanin 

synthesis of most plants. Through glycosylation of anthocyanin at 3-O position, the 

solubility of anthocyanin can be improved, which is convenient for transportation and 

storage to vacuoles. Glucose is the most common glycosylated donor in anthocyanins, 

others include galactose, rhamnose, xylose, arabinose and fructose. The above types of 
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sugar groups generally bind to the hydroxyl group at the C3 position of anthocyanins, and 

sometimes also bind to the hydroxyl group at the C5 and C7 positions. At present, the most 

researched is 3GT. Kobayashi et al. (2001) found that 3GT gene was only expressed in red 

grape variety Vitis Vinifera, but not in white grape. Virus-induced silencing of the RrGT2 

gene reduced the accumulation of anthocyanins in the corolla of transgenic tobacco, and 

tobacco plants showed lighter flowers than normal plants (Sui et al. 2018). Studies on most 

plants show that the expression level of 3GT is positively correlated with the accumulation 

of anthocyanins. 

MT is one of the key enzymes for anthocyanin modification, and the methylation 

reaction catalyzed by it contributes to the enrichment of anthocyanin types. Up to date some 

OMTs have be isolated and confirmed as useful molecular tool for altering and diversifying 

flower color, such as A3’5’OMT (Nakamura, 2015), PsAOMT (Du et al. 2015), NmATMs 

(Okitsu et al. 2018). 

Anthocyanin synthesis in plants is a complex and orderly process involving a variety 

of structural genes and the enzymes they encode. As early as 1974, scholars put forward 

the hypothesis of a membrane-associated enzyme complex involved in the metabolism of 

flavonoids (Stafford, 1974). This multi-enzyme complex greatly increases the rate of 

enzymatic reactions, and can respond rapidly to signals from inside and outside the cell and 

change the number and types of terminal products. The preliminary results of studies on 

the enzymes related to the anthocyanin synthesis of Arabidopsis revealed that: Enzymes 

involved in anthocyanin synthesis assemble into unstable or dynamic linear or spherical 

complexes in the cytoplasm, weakly anchored on the cytoplasmic side of the ER membrane. 

CH4, F3’H and other cytochrome P450-dependent monooxygenases act as the “anchor” of 

the complex fixed to the ER (Burbulis and Winkel-Shirley, 1999; Saslowsky and Winkel-

Shirley, 2001; Winkel-Shirley, 2002). The establishment of the multi-enzyme complex for 
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anthocyanin biosynthesis is helpful to understand the formation of metabolites and the 

“communication” mechanism in the anthocyanin biosynthetic pathway of higher plants. Of 

course, the universality of the complex in the entire plant kingdom also requires in-depth 

exploration.  

1.2.2 The transcription factors involved in anthocyanin biosynthesis 

 The expression intensity and pattern of structural genes related to anthocyanin 

biosynthesis are regulated by corresponding transcription factors. Transcription factors are 

a class of proteins that regulate target gene expression through specific binding of DNA 

sequences and protein-protein interactions to activate or inhibit the transcription of target 

genes and increase or decrease the level of target gene mRNA. When these transcription 

factors are mutated, the type or content of anthocyanins will change to varying degrees 

(Grotewold, 2006). MYB transcription factors are currently considered to be the most 

critical type of transcription factors in the anthocyanin biosynthesis pathway. One of their 

main functions is to regulate the synthesis of plant secondary metabolites. MYB 

transcription factor N-terminal contains a highly conserved DNA binding domain-MYB 

domain, which generally exists in 1-4 repeats (R). According to the number of R motifs, it 

can be divided into three types: R1MYB, R2R3MYB and R1R2R3MYB (Jin and Martin, 

1999). R2R3-MYB protein plays an important role in the regulation of anthocyanin 

synthesis. AaMYB2 (isolated from Anthurium andraeanum) abundantly expressed in the 

spathes from the red, pink, and purple cultivars, but almost cannot be detected in the spathes 

from the white and green ones. And it also was considered to be involved in regulating the 

expression of AaF3H, AaANS (Li et al. 2016). In transgenic Arabidopsis plants, the 

overexpression of PsMYB114L and PsMYB12L affected the expression of genes related to 

anthocyanin synthesis, leading to a significantly higher accumulation of anthocyanins, 
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resulting in purple-red leaves in Paeonia (Zhang et al. 2019). bHLH transcription factor is 

named for its basic helix loop helix (basic helix loop helix) conserved domain. The E Box 

cis-acting element in the promoter region of the gene encoding key enzyme involved in 

anthocyanin biosynthetic can be specifically recognized by bHLH transcription factors. The 

transcriptional core region of WD40 protein is called WD40 motif and consists of 40 amino 

acid residues. WD40 protein is ubiquitous in plants and plays an important role in 

regulating plant growth and development. The most common mode of action of these 

transcription factors is to directly bind to the cis-acting elements in the promoter region of 

the gene to regulate; the other is to combine with each other to form a ternary transcription 

protein complex and then jointly regulate. For example, MYB-bHLH-WD40 is the most 

widely studied and discovered complex that regulate the spatiotemporal expression of 

genes encoding related enzymes in the anthocyanin biosynthesis (Hichri et al. 2011). 

Nuraini et al. (2020) found in the study of violet color formation in Matthiola incana, 

MiMYB1 was a key gene that strictly regulated the biosynthesis of anthocyanins in the 

petals of Matthiola incana, and the MiMYB1-MibHLH2-MiWDR1 complex can activate 

the transcription of endogenous enzyme genes such as MiF3’H, MiDFR and MiANS.  

1.2.3 The co-pigment 

Some flavonoids and other related compounds combined with anthocyanidins to 

produce a hyperchromic effect are called co-pigments (Mazza et al. 1993). Co-pigment has 

no direct effect on flower color, the degree of co-pigmentation was a function of the 

concentration of the anthocyanins and the molar ratio of co-pigments to anthocyanins (Asen 

et al. 1972). Flavonols and flavones are common co-pigments, their content will also affect 

the color. There are two key enzymes flavone synthase (FNS) and flavonol synthase (FLS), 

which directly affect the synthesis of flavones and flavonol pigments. When FNS and/or 
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FLS genes are mutated, the synthesis of flavones and flavonols is hindered, which may 

cause flower color changes. There are two different kinds of FNS in the biosynthesis of 

flavones in plants: FNS I, a soluble dioxygenase, was only described for members of the 

Apiaceae family; FNS II, belong to cytochrome P450 family, has been found in all other 

flavone accumulating tissues (Martens and Mithöfer, 2005). In transgenic torenia plants 

with suppressed FSII expression, accumulation of both flavone and anthocyanin decreased 

in the petals, and the flower color changed from blue to pale blue (Ueyama et al. 2002). 

That implied that flavone contributes to the stability of anthocyanin by co-pigmentation of 

flavone and anthocyanin. Flower color of Petunia changed from violet to pale violet by the 

expression of the FLS or FNS gene (Tsuda et al. 2004). The content of anthocyanin in the 

petals of transgenic tobacco expressing OsFLS was significantly reduced, while the content 

of kaholinol-3-O-rutinoside was significantly increased, and resulting in light pink or white 

flowers (Park et al. 2019). By regulating the expression of DFR and FLS genes in tobacco, 

the accumulation of anthocyanin and flavonol can be influenced to produce red or white 

flowers (Luo et al. 2016). The heterologous expression of MaFLS in tobacco inhibits the 

expression of NtDFR, NtANS1 and NtANS2, resulting in reduced petal coloration (Liu et al. 

2019). 

1.2.4 Other factors 

Anthocyanins generally exist in petal epidermal cells, so the shape of epidermal cells 

affects the appearance of flower color to a certain extent. The cone-shaped cells can 

increase the proportion of incident light entering the epidermal cells and enhance the light 

absorption of the pigment, thereby enhancing the intensity of the flower color. Noda et al. 

(1972) has identified a gene (mixta) that affects the intensity of the epidermal cell 

pigmentation in Antirrhinum majus petals by affecting the shape of petal epidermal cells. 
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Anthocyanins are mainly stored in vacuoles of petal epidermal cells, and the pH value of 

vacuoles also affects the color presentation of anthocyanins. Due to the mutation and 

inactivation of the Pr gene encoding InNHX1 (vacuolar Na+/H+ exchanger) in Japanese 

morning glory, the vacuole PH increases during the flower-opening, and finally its reddish-

purple buds changed into purple flowers (Yamaguchi et al. 2001). In addition, some metal 

ions could combine with the O-dihydroxyl position of the anthocyanin B ring to form highly 

colored and stable metal complexes. Sigurdson et al. (2017) complexed different types of 

cyanidin derivatives with Fe3+, Al3+, and found that both ions can make anthocyanins 

produce a certain red shift and color enhancement, but Fe3+ has the most obvious effect. 

In addition, anthocyanin synthesis is the result of both internal and external factors. 

Enzymes encoded by structural genes and regulator genes determined the type of 

anthocyanin, and environmental factors can not only affect the rate of anthocyanin 

biosynthetic, but also affect the accumulation and stability of anthocyanin. When 

anthocyanin is accumulated in plant cells, environmental factors have an effect on its 

stability, thereby accelerating or slowing down the degradation of anthocyanin. 

1.3 Research progress on molecular breeding of cyclamen 

flower color 

Cyclamen is a member of Primulaceae, native to the Mediterranean coast of Europe, 

the genus consists of 22 species (Grey-Wilson, 2002). It was once called kuklos (means 

“circle, wheel”) in Greek, mainly due to its spherical tuber and the spiraled peduncle 

(Cornea-Cipcigan, 2019). The swept-back petals of cyclamen are elegant and beautiful, the 

leaves also diverse in shapes and rich in patterns. Because of these excellent ornamental 

characteristics, cyclamen is loved by people all over the world. In recent years, with the 

expansion of market demand, cyclamen producers and breeding experts have begun to pay 



19 

 

more attention to consumers’ preferences and commit to cultivating new varieties with rich 

and unique ornamental characteristics and high quality. Hybrid breeding is a traditional and 

important means to create new varieties or types of flowers. It can not only combine the 

excellent characteristics of two or more varieties, but also produce huge heterosis, improve 

the growth vigor and stress resistance of flowers. However, there are also some defects in 

hybrid breeding, such as incompatibility of distant hybridization, difficulty in breaking 

plant reproductive isolation, long breeding cycle and inconveniency for improvement of 

single traits. Mutation breeding, which has a relatively short history, is usually performed 

by radiation mutagenesis and is often combined with tissue culture techniques. It has the 

advantages of high mutation rate, obtaining more excellent variation types in a short time, 

etc. But at the same time there are disadvantages such as difficult to grasp the direction of 

inducing mutation and less favorable variation. With the continuous development of 

biotechnology, genetic engineering methods have become complementary methods of 

conventional breeding. It breaks the boundaries of communication between species, 

provides great potential for improving and modifying flower traits, and provides technical 

guarantee for directional breeding of flowers. Genetic engineering breeding has also 

attracted the attention of many cyclamen researchers, especially on the improvement of 

main ornamental traits. 

Most of the current commercial cyclamen are obtained through crossing among 

selected natural mutants of wild Cyclamen persicum Miller. The wild Cyclamen persicum 

always has small flowers consisting of a deep purple “eye” (the base region of the petal) 

and a purple “slip” (the region excluding the eye) (Grey-Wilson, 2002). However, no matter 

what color the slips of Cyclamen persicum-derived cultivars are, they almost have the same 

“eye” as the wild C. persicum. These cultivars are widely used in potted plants and garden 

planting because of rich colors and graceful posture. The flower color formation of 
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cyclamen is most closely related to anthocyanins, an important class of flavonoids, except 

for a few yellow varieties whose main component is chalcone. The cultivar ‘Golden Boy’, 

lacking anthocyanins, has a pale-yellow flower with chalcone 2’-glucoside as a major 

pigment. ‘Pure White’, lacking anthocyanins, has a white flower with quercetin and 

kaempferol glycosides (Ishizaka, 2018). Therefore, the use of molecular technology to 

regulate the synthesis of anthocyanins to create more new colors of cyclamen seems to be 

a direct and effective choice.  

With the discovery of anthocyanin biosynthesis pathway in plants, some genes related 

to cyclamen anthocyanin synthesis have been cloned. Antisense inhibits the expression of 

endogenous F3’5’H, lead to a shift in hue from purple to red/pink in one transgenic line 

(Boase et al. 2010). HPLC analysis showed that the content of delphinidin-derived 

pigments was reduced while cyanidin-derived pigments was increased. Total anthocyanin 

concentration was reduced while flavonol concentration was recorded slightly. The results 

indicated that the regulation of key enzymes can change the direction of different branches 

of the anthocyanin synthesis pathway, and even affect the content of anthocyanins and other 

flavonoids. With the development of hybrid breeding and the application of ion beam 

irradiation technology, more and more cyclamen with novel flower color have been 

cultivated. Comparative analysis using these color mutations is an effective approach to 

study the function of genes involved in anthocyanin synthesis. By comparing the content 

and types of anthocyanin and flavonol in Cyclamen graecum gra6 (pink-purple slip and 

deep purple eye) and C. graecum gra50 (white-flowered), it was found that the difference 

of color between them was probably due to the interruption of anthocyanin synthesis. 

Therefore, the key genes involved in their anthocyanin synthesis were isolated and 

expressed, and the expression defective of CgraDFR2 gene was probably found to be the 

main cause of white flower mutation (Akita et al. 2010). By using the ion beam irradiation, 
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the variant KMrp (the major anthocyanin is delphinidin 3,5-diglucoside) was obtained from 

KM (the major anthocyanin is malvidin 3,5-diglucoside), and OMT is the key enzyme that 

catalyzes the synthesis of malvidin 3,5-diglucoside from delphinidin 3,5-diglucoside. In 

view of this, two CkmOMT genes were isolated, and it was proved that a deletion of the 

entire CkmOMT2 region caused by ion-beam irradiation led to its defective expression in 

KMrp, thus the change in anthocyanin composition in KMrp (Akita et al. 2011). The 

biosynthesis of anthocyanins is carried out in the cytosol, and then must be transported to 

the vacuole to make the plant tissues show colorful colors. A GST gene related to vacuolar 

accumulation of anthocyanins in cyclamen was be identified, which will provide further 

insight into the synthesis and transport of anthocyanin (Kitamura et al. 2012). Flavonols 

known as co-pigment that occasionally modify flower color when combined with 

anthocyanins. The functional FLS genes have been isolated from Cyclamen purpurascens, 

which greatly broadened our understanding of cyclamen flower coloration (Akita et al. 

2018). Cloning and characterization of these key genes helped us gradually understand the 

molecular mechanism of cyclamen anthocyanin synthesis. And through the development of 

molecular technology, these genes will also become beneficial tools to change the content 

and type of anthocyanins, thereby changing the appearance of flower colors.  
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Chapter 2 Isolation and analysis of flavonoid 3’-hydroxylase 

(F3’H) genes involved in flower coloration from Cyclamen 

2.1 Introduction 

Among the structural genes involved in anthocyanin biosynthesis, F3’H and F3’5’H 

played crucial roles in determining the hydroxylation pattern of flavonoids (Figure 2-1). 

F3’H catalyzes the hydroxylation at the C3 position of the B ring to generate DHQ, which 

is then catalyzed by a series of downstream enzymes to finally generate cyanidin-based red 

anthocyanin. F3’5’H catalyzes the hydroxylation at the C3, C5 position to produce DHM, 

and finally generate delphinidin-based bule anthocyanin. In addition, F3’H usually exhibits 

broad substrate specificity and can also react on multiple sites such as flavone, flavonol, 

flavanol, dihydroflavonol, etc. For example, it can catalyze kaempferol to quercetin and 

naringenin to eriodictyol (Forkmann, 1999). Both F3’H and F3’5’H belong to cytochrome 

P450 family, and they are the member of CYP75B and CYP75A subfamily respectively. 

They mainly catalyze hydroxylation and require NADPH as a cofactor (Forkmann, 1991). 

Since the F3’H gene was first cloned from petunia in 1999, the F3’H gene has now been 

isolated from a variety of plants, such as snapdragon, tulip, gentian, gerbera and so on. 

F3’H is a key enzyme in the flow of cyanidin-based anthocyanin synthesis, so it is generally 

believed that the expression of F3’H is related to the accumulation of red anthocyanins. 

Down-regulation of the expression of F3’H would change the proportion of cyanidin-type 

anthocyanin in flowers and lead to the change of flower color. Down-regulation of 

endogenous F3’H expression and over-expression of rose DFR gene in red petunia resulted 

in the promotion of pelargonidin synthesis to produce orange petunia (Tsuda, 2004). Han 

et al. (2010) detected the accumulation of cyanidin-type and pelargonidin-type 

anthocyanins in Arabidopsis seedlings transformed with apple MdF3’H gene however, 
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these anthocyanins were not detected in Arabidopsis tt7-1 mutant seedlings. Expressing the 

F3’H gene of Snapdragon Antirrhinum kelloggii in petunia increases the cyanidin content 

in the transgenic plants and the flower color becomes redder (Ishiguro, 2012). The 

expression of F3’H in tulips is positively correlated with the accumulation of cyanidin. 

However, after the insertion mutation of F3’H promoter, its transcriptional activity 

decreased, which hindered the synthesis of cyanidin in petals, resulting in the production 

of light-colored varieties (Yuan Y. et al. 2014). F3’H of Euphorbia pulcherrima cultivar 

‘Harvest Orange’ contained an insertion of 28 bases, which caused frameshift mutation 

with a premature stop codon, resulting in nonfunctional enzymes. In the absence of F3’H 

enzyme activity, the plants have enough pelargonidin precursor to give bracts of ‘Harvest 

Orange’ rare orange-red color (Nitarska et al,2018). These indicate that regulating the 

expression of F3’H can indeed regulate the accumulation of anthocyanins in plants, thereby 

changing the color of plants. But up to now the molecular and biochemical characterization 

of cyclamen F3’H has almost not been described.  

STR is one cultivar of C. persicum, which has larger red flowers than the original 

species. Component analysis displayed that the major anthocyanin components in STR 

petals has been changed from Mv3,5dG to Pn3Nh. F3’H and F3’5’H are key enzymes for 

synthesizing Pn3Nh and Mv3,5dG respectively. This time we isolated F3’H genes from 

STR slips obtained three full-length ORFs, analyzed the expression patterns of F3’Hs, 

constructed the corresponding protein expression vectors and determined the best induction 

conditions, which laid a foundation for further study on the relationship between F3’H and 

flower color formation in the future. 
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2.2 Materials and methods 

2.2.1 Plant materials 

C. persicum and STR were grown in greenhouse facility at Saitama Institute of 

Technology. The petals of cyclamen were divided into two parts: a base part known as the 

“eye”, and all other part of the petal called “slip” (Figure 2-2). Leaf and slips were sampled 

and immediately frozen in liquid nitrogen then kept at -80 °C until required.  

 

F3’H F3’5’H 

Dihydromyricetin 

(DHM) 
Dihydrokaempferol 

(DHK) 
Dihydroquercetin 

(DHQ) 

Fig. 2-1 Schematic diagram of the catalytic reactions of F3’H and F3’5’H in the 

anthocyanin synthesis pathway 

(a) C. persicum (b) ‘Strauss’ 

Fig. 2-2 The photo of plant materials (a) C. persicum, (b) ‘Strauss’ 

The circled parts are called “eye”, and the rest parts of the petal called “slip”. 
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2.2.2 Characterization of anthocyanidin composition 

Taking full opened slips of STR as materials, 10% acetic acid by 10 times the volume 

of fresh weight was added and grinded thoroughly in a mortar, transfer to a centrifuge tube, 

and centrifuge, 13200 rpm, 15 min, 4 ℃. Aspirate the supernatant, filter it with a 0.22 μm 

microporous membrane, and store in a refrigerator at 4 ℃, shaded from light. High-

performance liquid chromatography (HPLC) was performed. A Prodigy ODS-3 reversed-

phase column (4.6 × 100 mm 3 μm 100 Å, Phenomenex) was used to separate the 

metabolites at 30 ℃. The mobile phase consisted of 1.5% (v/v) phosphoric acid(A), 1.5% 

(v/v) phosphoric acid, 20% (v/v) acetic acid and 25% (v/v) acetonitrile solution (B). The 

elution program was proceeded over 60 min at a flow rate of 0.3 ml min-1. Quantify the 

reaction products by measuring the absorbance peak area at 530 nm.  

2.2.3 Extraction of genomic DNA 

The method of DNA extraction was modified from Murray and Thompson (1980). 

Plant material was ground to powder in liquid nitrogen. Add 500 μl of 2% 

Cetyltrimethylammonium Bromide (CTAB) solution per 100 mg materials. Recovered the 

mixture to a 1.5 ml centrifuge tube, incubated at 65 ℃ for 30 min. Put in 200 μl of 

chloroform/isoamyl alcohol (24:1) (CIA), after centrifugation (15000 rpm, 15 min), pipette 

the supernatant into a new centrifuge tube. Add 200 μl of CIA and centrifuge again, collect 

the supernatant, mixed with 1.5 times volume of 1% CTAB leave at room temperature for 

1 hour. Centrifuge (8000 rpm, 10 min), then discard the supernatant and add 400 μl of CsCl 

until the precipitate is completely dissolved. Continue to add 100% alcohol to the 

precipitation solution, mix thoroughly, and place it at -20 ℃ for more than 20 minutes. 

Centrifuge (15000 rpm, 15 min, 4 ℃) after placing, discard the supernatant, add 70% 

alcohol for elution (15000 rpm, 5 min, 4 ℃). Removed residual ethanol by drying in a 
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Vacuum drying. Use 45 μl of TE to dissolve the precipitate, add 5 μl of RNase A (5mg ml-

1), and place at 37 ℃ for 1 hour to remove RNA interference. 

After the RNase treatment, add equal volumes of Phenol/Chloroform/Isoamyl alcohol 

(25:24:1) (PCI) (15000 rpm, 5 min, 4℃) and CIA (15000 rpm, 5 min, 4℃) for extraction, 

and finally recover the supernatant to a new centrifuge tube. Precipitate DNA with 2.5 times 

volume of 100% alcohol and 1/10 volume of 3 M sodium acetate (NaAc) (15000 rpm, 15 

min, 4℃), keep the precipitate, add 500 μl of 70% alcohol for elution (15000 rpm, 5 min, 

4℃). Discard the supernatant, dry the precipitate, add an appropriate amount of TE solution 

to dissolve the precipitate, and finally store at -20 ℃. 

2.2.4 Extraction of total RNA 

Total RNA was extracted from leaves and the slips at four different floral development 

stages: 1) bud between 0.2 cm and 0.5 cm; 2) bud between 0.6 cm and 1.0 cm; 3) bud more 

than 2.0 cm long; 4) full opened flower (Figure. 2-3). The method modified from CTAB 

method (Chang et al. 1993).  

Weigh 100mg of plant tissue, add liquid nitrogen and quickly grind in a mortar to 

powder. For each100 mg homogenized tissue of plant, used 1000 mL of 2×CTAB solution, 

40 μl of 4% β-mercaptoethanol. Transferred the homogenate to the microcentrifuge tube 

and warmed in heat-block at 65 ℃, 10 min. Added 200 μl of CIA, stirred then centrifuged 

the sample for 5 min,13 000 rpm, 20 ℃, to separate the phases. Transferred the aqueous 

supper phase to a new tube. Added 200 μl of CIA and centrifuged again. Added a quarter 

of 10 M LiCl and incubate on ice for at least 2 hours. Centrifuged the sample for15 min, 15 

000 rpm, 4 ℃, then removed the aqueous supper phase. Dissolved sample in100 μl of TE 

(10 mM Tris-HCI, 1mM EDTA pH 8), centrifuged for 15 min at 13 000 rpm, 4 ℃. 

Transferred the aqueous supper phase to a new tube. Ethanol precipitation of RNA: add 3 
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M sodium acetate and 2.5 times the volume of 100% Ethanol, centrifuged for 13 000 rpm 

40 ℃. Decanted the super natant without disturbing the pellet and subsequently wash with 

500 μl 70% ethanol then centrifuge at 15 000 rpm, 4 ℃ for 5 minutes. Removed residual 

ethanol by drying in a vacuum drying. DNase treatment: added 43 μl of RNase-free water, 

5 μl of 10×DNaseI Buffer and 2 μl of DNase Ⅰ (0.2 units/μl), then incubated for 1 hour at 

37 ℃ in water bath. Added volumes equal of PCI to RNA sample and centrifuged for 5 

min at 15 000 rpm, 4 ℃. Transferred the aqueous upper phase to new microcentrifuge tube, 

added volumes of equal of CIA to RNA sample and centrifuged for 5 min,15 000rpm, 4 ℃. 

Ethanol precipitation of RNA: add 3 M sodium acetate solution, 100% Ethanol, centrifuge 

for 13 000 rpm 4 ℃. Decanted the super natant without disturbing the pellet and 

subsequently wash with 500 μl 70 % ethanol, then centrifuge at 15 000rpm 4 ℃ for 5min. 

Removed residual ethanol by drying in vacuum drying. Added 50 μl RNase-free water to 

dissolve. Store at -80 ℃ until use. 

 

 

S1      S2          S3              S4 

Fig. 2-3 Different floral development stages of STR 
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2.2.5 Synthesis of first-strand cDNA 

First-strand cDNAs were synthesized from 2 μg total RNA extracted from slips of all 

stages using an oligo (dT)-anchor primer (5’-GAC TCG AGT CGA CAT CGA T17-3’) with 

reverse transcriptase according to the manufacturer’s instructions (PrimeScript II 1st cDNA 

synthesis kit, TaKaRa, Japan). Store the synthesized cDNA at -20 ℃. 

2.2.6 Isolation of STRF3’H genes  

The degenerate primers were designed based on the conserved domains of plant F3’H 

proteins involved in anthocyanin accumulation, such as Arabidopsis thaliana (AtTT7, 

AF155171, 2000), Petunia (PhF3’H, AF155332, 1999), Centaurea cyanus (CcF3’H, 

FJ753550,2009) and Vitis amurensis (VaF3’H, FJ645766, 2009). The partial cDNA of the 

F3’H homologues were isolated from slips of STR by reverse transcription-polymerase 

chain reaction (RT-PCR). To isolate the putative STRF3’H full-length cDNA, 3’rapid 

amplification of cDNA ends (RACE) method (Frohman et al. 1988) and 5’-RACE method 

were carried out by using a 5’/3’-RACE 2nd Generation Kit (Roche, Germany). Four pairs 

of gene special primers (Table 1.) were designed to amplify the 5’ cDNA ends of STRF3’Hs. 

To obtain the full-length open reading frames, the cDNA templates were amplified by PCR 

with the gene-specific primers list in Table 1. 

Recovery of PCR products: Gel electrophoresis for PCR products at 220 V for about 

20 minutes. Put the gel after electrophoresis under UV light, cut and recover the target band 

part of the gel as soon as possible. The recovery operation is in accordance with the kit 

(NucleoSpin® Gel and PCR Clean-up, MACHEREY-NAGEL, Germany). 

Ligation: All PCR products were cloned into the pTAC-2 Easy vector (Bio Dynamics 

Laboratory Inc., Japan). The preparation of ligation reaction system follows the kit 

instructions, and incubated at 16 ℃ for 30 min. 
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Desalting: Add 20 μl of PCI to the ligation product, mix and centrifuge (15 000 rpm, 

4 ℃, 5 min). Aspirate the supernatant and transfer to a new 1.5 ml tube, add 20 μl of CIA，

and centrifuge (15,000 rpm, 4 ℃, 5 min). Transfer the supernatant to a new 1.5 ml tube, 

followed Ethanol precipitation and ethanol rinsing. After drying in a vacuum desiccator for 

5 min, add an appropriate amount of TE buffer (PH8.0) to dissolve the precipitate. 

Electroporation: Thawed 40 μl of competent cells (Escherichia coli JM109) on ice and 

added 2 μl of the desalted ligation products, mixed and transferred the mixture to gap of 

0.1 cm electrode cuvette. Transformation was performed by electroporation (Gene Pulser 

Xcell TM), selected the protocol detail screen for E. coli to pulse 1.8 kV. Add 700 ml SOC 

medium, repeatedly pipette and aspirate, then transfer all the bacterial liquid to a new 

centrifuge tube, and incubated for 1 hour in a 37°C water bath. Spread the incubated 

bacterial solution with 40 μl of 5-Bromo-4-chloro-3-indolyl β-d-galactopyranoside (X-gal) 

(20 mg L-1) and 4 μl of isopropyl-β-D-thiogalactopyranoside (IPTG) (200 mg mL-1) on the 

LB medium containing 100 mg ml-1 of Ampicillin (Amp). Place in a 37 °C incubator for 16 

hours. 

Colony PCR: Take the detection of 8 samples as an example, and all operations were 

performed on ice. Prepare the reaction solution according to the following system: 16 μl of 

1×Standard Reaction Buffer, 16 μl of 2 mM dNTP, 1.6 of 1mM primer (T7-Fw, SP6-Rv) 

respectively, 0.64 μl of DNA Taq Polymerase, vortex to mix, dispense 20 μl of the mixture 

to 8-strip PCR tubes on ice. Take another 8-strip PCR tube and inject 50 μl LB liquid 

medium into each tube. Use a sterilized toothpick to pick out a single white clone, quickly 

dip it into the small tube containing the PCR reaction solution, and then dip it into the 

corresponding small tube containing the LB culture solution. Follow this method to pick 8 

white clones in turn. Store the 8-strip PCR tubes containing LB medium at 4 °C. Put the 8-

strip PCR tubes containing the PCR reaction solution into the Thermal cycler. The PCR 
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reaction program was set as follow: step1，95 ℃ 2 min; step2，95 ℃ 30 s，48 ℃ 30 s, 

72℃ 1 min，30cycles; step3, 4 ℃. PCR products were detected by electrophoresis. Take 

a new test tube and inject 1.5 ml of LB medium containing 100 mg ml-1 of Amp. Transfer 

50 ml of LB culture solution containing colony corresponding to the reaction solution with 

the target band into the new test tube, and culture with shaking at 37 °C, 130 rpm, 16 h.  

Plasmid extraction (Small-scale): Lysis of Cells, pour the culture into a 1.5 ml 

microcentrifuge tube. Centrifuge at 8000 rpm, 5 min. After that, remove the medium by 

aspiration, leaving the bacterial pellet. Add 150 μl Sol.1 (25 mM Tris-HCl, 10 mM EDTA, 

50 mM glucose) to resuspend the bacterial pellet. Add Sol.2 (0.2 N NaOH, 1.0% SDS) and 

Sol.3 (10% HAc,5 mM NaAc) in turn, and mix the centrifuge tube upside down after each 

solution is added. Add 200 μl of CIA, mix the organic and aqueous phases by vortex, and 

then centrifuge at 15000 rpm for 5 min at 4 ℃, then transfer the aqueous upper layer to a 

new tube. Recovery of Plasmid DNA, add 600 μl of isopropanol and mix, place the mixture 

at room temperature for 10 min. Centrifuge at 15000 rpm, 15 min 4 ℃, abandon 

supernatant, add 700 μl of 70% EtOH, centrifuge 15000 rpm, 5 min 4 ℃, discard the 

supernatant and dry the sediment. Dissolve the nucleic acids in 45 μl of TE (pH 8.0), add 5 

μl RNase A (5 mg ml-1), vortex the solution gently, 37 ℃ water bath treatment for 1 h. 

Added 50 μl of PCI to the mixture and centrifuged for 5 min at 15 000 rpm, 4 ℃, transferred 

the aqueous upper phase to new tube, added 50 μl of CIA and centrifuged for 5 min, 15 000 

rpm, 4 ℃. Recover supernatant to new 1.5 ml tube, ethanol precipitation and ethanol rinse, 

pour away the alcohol and retain the sediment removed residual ethanol by drying in 

vacuum drying. Added 100 μl of polyethylene glycol (PEG) solution, after the precipitation 

is dissolved, let it stand at 4 ℃ for 1 h. Then centrifuge (10000 rpm, 10 min, 4 ℃), discard 

the supernatant and add 200 μl of 70% EtOH, centrifuge (15000 rpm, 5 min, 4 ℃), pour 

away the alcohol and retain and dry the sediment in vacuum drying. Add 50 μl of TE buffer 
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(PH 8.0), store at -20 ℃ until use. 

Sequencing: Sequenced by a DNA sequencer (Model 3500, Applied Biosystems, 

USA) using the Big Dye® Terminator ver. 3.1 Cycle Sequencing Kit (Applied 

Biosystems, MA, USA).  

2.2.7 Bioinformatics analysis of STRF3’H sequences 

Predict the physical and chemical properties and other information by online software 

ProtParam (http://web.expasy.org/protparam/). Transmembrane domain was predicted by 

TMHMM (http://www.cbs.dtu.dk/services/TMHMM/). Prediction of protein secondary 

structure was carried out by Network Protein Sequence Analysis (Combet et al. 2000) using 

self-optimized prediction method with alignment (SOPMA) (Geourjon and Deléage 1995). 

Multi-alignment analysis was performed by the ClustalW (Thompson et al. 1994) program, 

the deduced amino acid sequence of STRF3’H1 and STRF3’H2a, STRF3’H2b were aligned 

with other F3’H proteins that obtained from the DDBJ/GenBank DNA databases (TT7, 

AF155171; PhF3’H, AF155332; VaF3’H, FJ645766). Phylogenetic trees were constructed 

using the Neighbor-Joining method (Saitou et al. 1987) with MEGA7 (Kumar et al. 2016). 

2.2.8 Genomic PCR of STRF3’Hs  

Based on the obtained full-length STRF3’H cDNAs, four pairs of gene-specific primers 

were used to analyze the genomic sequences in detail. Cycling conditions were as follows: 

pre-denaturation at 95 ℃ for 2 min, followed by 30 cycles of amplification (95 ℃ 30 

seconds, 59-65 ℃, dependent on the melting temperature of each primer, for 30 seconds 

and 72 ℃ for 2 min), then extension at 72 ℃ for 7 min, at last cooling to 4 ℃. All PCR 

products were cloned and sequenced using the same method as 2.2.6. 
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2.2.9 Amplification of STRF3’5’H and corresponding genomic 

sequence 

STRF3’5’H was cloned from C. persicum (GQ891056). To amplify the corresponding 

genomic sequence of STRF3’5’H, two pairs of gene-specific primers were used (table 1). 

For genomic PCR of STRF3’5’H, 0.5 μg DNA extracted from the leaves of STR were used 

as template, the cycling conditions were as followed: pre-denaturation at 95 ℃ for 2 min, 

followed by 30 cycles of amplification (30 seconds at 95 ℃, 30 seconds at 60 ℃ and 2 min 

at 72 ℃), then extension at 72 ℃ for 7 min, at last cooling to 4 ℃. The PCR product was 

recovered, ligated to the cloning vector and sequenced; the methods were as 2.2.6 described. 

 2.2.10 Expression pattern analysis of STRF3’H genes  

The expression level of STRF3’H genes at different flowering stages as well as the 

expression level in leaves were detected by real-time PCR. Real-time PCR was conducted 

on the Quant Studio™ 1 System using the standard cycling mode with PowerUpTM SYBR® 

Green Master Mix (Thermo Fisher Scientific). Each 20 μl reaction contained 100 ng of 

cDNA (template), 10 μM of primer, and 10 μl of 2× Master Mix. The eEF1a genes of STR 

were amplified as an internal control under the same conditions. Each experiment was done 

in duplicate and repeated at least twice, 2−ΔΔCT method was used to analyze the relative 

expression level of target genes (Livak and Schmittgen 2001). 

The transcription level of F3’H genes and F3’5’H in STR and C. persicum were also 

analyzed by real-time PCR. The detection was performed on the EcoTM Real-Time System 

with Brilliant III Ultra-Fast SYBR® Green QPCR Master Mix (Agilent Technologies), 

under the following cycling conditions: 95 °C for 60 s, followed by 40 cycles of 95 °C for 

5 s and 60 °C for 60 s. The primers were present in table 1. The eEF1a genes of STR and 

C. persicum were amplified as an internal control under the same conditions. Each 
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experiment was conducted in four replicates, and relative gene expression was determined 

using the 2−ΔΔCT method (Livak and Schmittgen 2001). 

2.2.11 Expression of STRF3’Hs in E. coli 

Take the cDNA of F3 H1, F3’H2a, F3’H2b as the template respectively and use the 

gene-specific primer with the restriction site (forward with BamHI site and reverse with 

SacI site) for PCR amplification. Subcloned the amplified fragments into the pTAC-2 

vector (Takara), and sequenced to confirm that the sequences were correct. Excised these 

target fragments by BamHI/ SacI double digestion and ligated in to pET21a (+) vector 

(Novagen) digested in advance by the same enzymes. Ligation system according to the 

ligation high (Toyobo, Japan) instructions. Transform the ligation mixture into E. coli 

DH5α (Nippon Gene, Japan) competent cell by heat shock method, and spread the bacteria 

with recombinant plasmid on LB medium containing AMP (100 mg ml-1). After the plaque 

grows, pick a single clone to extract the plasmid and sequence. The operation method is as 

described above. Transfer the correctly sequenced recombinant plasmid, pET21a-

STRF3’H1, pET21a-STRF3’H2a, pET21a-STRF3’H2b to E. coli BL21(DE3) (Novagen). 

Take pET21a-STRF3’H1 as an example: 

Pre-culture: Inoculate single colonies to 2 ml LB broth with 100 mg ml-1 AMP 

incubated at 37 ℃ 16 hours. Take 20 μl of the cultured bacteria liquid and add it to 2 ml 

LB liquid medium containing AMP (100 mg ml-1), and cultivate at 37 °C until OD600 

reached 0.4-0.6.  

Main culture: Add IPTG to a final concentration of 100 μM, 500 μM, respectively, 

and further culture the cells at 20 ℃, adjust the incubation time for10 h, 16 h, 20 h.  

Separation of soluble and insoluble proteins: Take the cultured bacteria liquid 1.3 ml 

to 1.5 ml tube, centrifuge at 4000 rpm, 4 ℃, 10 min, discard the supernatant, add the 
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remaining 700 μl bacterial solution to the centrifuge tube, and suspend the precipitate. Add 

70 μl of Fast BreakTM Cell Lysis Reagent (Promega), mix by inversion for 40 minutes, then 

centrifuge at 132 000 rpm, 4 ℃, 15 min, transfer the supernatant to a new 1.5 ml tube, and 

store it at 4 ℃ together with the tube containing the precipitate.  

Purification of soluble protein: the fusion protein was purified utilizing the His LinkTM 

Spin Protein Purification System (Promega) following the kit instruction. 

SDS-PAGE: Add 50 μl of 10 mM-Tris-HCl buffer solution to the insoluble protein 

and stir until the precipitate is dissolved. Take 15 μl of insoluble protein, soluble protein, 

and purified protein, respectively, mix with 5 μl of loading buffer to SDS-PAGE 

electrophoresis. After completion of electrophoresis, SDS-PAGE electrophoretic gel was 

stained with Coomassie Brilliant Blue R250 and eluted with eluent (25 ml methyl alcohol, 

35 ml acetic acid, Milli-Q water up to 500 ml). 

Mass cultivation and expression: Inoculate single colonies of E. coli BL21(DE3) 

harboring pET21a-STRF3’H1 plasmid to 2 ml LB broth with 100 mg ml-1 AMP incubated 

at 37 ℃ 16 hours. Take 500 μl of the cultured bacteria liquid and add it to 50 ml LB AMP 

(100 mg ml-1) liquid medium, and cultivate at 37 °C until OD600 reached 0.4-0.6. Add 

IPTG to a final concentration of 500 μM further cultured at 20 ℃ for 20 h. Transfer the 

cultured bacterial solution to a 50ml falcon tube, centrifuge at 3000 xg,15 min, 4 ℃, discard 

the supernatant, and add 1/20 volume of the bacterial solution Lysis buffer to quickly 

suspend the precipitation. Add 1/50 volume of the bacterial solution Lysozyme solution, 

stir on ice for 30 minutes, then add 1/50 volume of the bacterial solution 10% TritonX-100 

solution, continue stirring on ice for 20 minutes, centrifuge for 30 minutes (12 000 xg, 4 ℃), 

and recover the supernatant. 
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Table 1 . Primers used in chapter 2. 

Primer Sequence (5’-3’) 

For 5’RACE 

C.perF3’H1-RP TTAAGCCTGGTAAACTTCCTTAGCG 

C.perF3’H1-RP1 ATCAGCATTGGGCCTTTCG 

C.perF3’H1-RP3 CTCCTTGATGATGGCTTGTAGG 

STRF3’H1-RP5 CCGTGTTTCTGGTCACTTCC 

STRF3’H1-RP6 CCAACATTACACGTCCTAGC 

STRF3’H1-RP7 GTGCGTCTTCAGAAACTTGG 

STRF3’H2-FP2 CAAGATGAAGAAGCTTCACC 

STRF3’H2-RP4 TCTCCTAAACACACAGCTTGC 

STRF3’H2-FP3 ATATGTTCACAGCCGGAACG 

STRF3’H2-RP3 GCGAATGTGACGAAAGTCATCC 

For isolation of ORFs 

STRF3’H1-FP ATGTCTACTTTGGGACTCACACTATTC 

STRF3’H1-RP TTAAGCCTGGTAAACTTCCTTAGCG 

STRF3’H2-FP ATGTTCTCTCCCAGCCTCG 

STRF3’H2-RP TTAAACCTGGTAAACATGGGTC 

For Real time-PCR 

C.purF3’5’H-FP  ATGGCACTAGACATAGTCTTGC 

C.purF3’5’H-RP TTAAGCAACATAGGCACTTGGG 

C.perF3’H1-FP3 TTGGTAGTTGGCCAAAACCG 

C.perF3’H1-RP TTAAGCCTGGTAAACTTCCTTAGCG 



36 

 

STRF3’H2-FPa GAGGGAAGCTCACCGACACC 

STRF3’H2-FPb GAGGCAAGCTCACCGACACT 

STRF3’H2-RPa TTCTCCGGCAATAGCCCCTCG 

STRF3’H2-RPb TCCTCCGGCAATAGCCCGTCT 

For genomic PCR 

STRF3’H1-FP4 ATGTTGACACGTGCCTTGTC 

STRF3’H1-FP6 TATCCGCTATTGTGGAGGAG 

STRF3’H1-RP4 TCAGTAACTGGACCATTCGC 

STRF3’H1-FP3 TTGGTAGTTGGCCAAAACCG 

STRF3’H2-FP1 CATCAGTGCACCTCTTTTCC 

STRF3’H2-FP5 CCGTGTTGACACACAAGTTG 

STRF3’H2-RP2 CTCGAGCGATATCAGCATGC 

CpurF3’5’H-FP1 ACTCTGGCCGAAGGTCAGAGC 

CpurF3’5’H-RP1 TAGTAGCCGTTCACTTCACATGC 

eEF1aFw CTGGTGGTTTTGAGGCTGG 

eEF1aRv CTGGCCAGGGTGGTTCATGAT 
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2.3 Results and discussion 

2.3.1 Anthocyanins in the petals of STR 

HPLC analysis of the pigments extracted from STR slip showed a particularly main 

peak, which was identified as Pn3Nh the major anthocyanin of STR (Figure. 2-4). However, 

the main anthocyanin component of C. persicum was identified as Mv3,5dG (Ishizaka, 

2018). The precursors of these two pigments are cyanidin and delphinidin respectively. 

F3’H and F3’5’H are key enzymes at the branch of cyanidin and delphinidin synthetic 

pathway. It suggested that the red mutant of STR may be related to F3’H and / or F3’5’H.  

 

 

2.3.2 Isolation and sequence analysis of F3’H genes from STR 

Two fragments of F3’H (STRF3’H1 and STRF3’H2) were obtained from STR slips 

by degenerate PCR. The 5’ end sequences of STRF3’H1 was amplified by 5’RACE, the 

first amplification was about 700 bp, and the second amplification was about 300 bp (Figure. 

2-5). The full-length cDNA of STRF3’H1 was preliminarily obtained by splicing the two 

Fig. 2-4 Anthocyanins in the slips of ‘Strauss’, analyzed by HPLC chromatogram and 

detected at 530 nm 

Pn3Nh 
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sequences. Then gene-special primers were designed between start codon (ATG) and stop 

codon (TAA), to sequencing the ORF in segments, finally got the confirmed ORF of 

STRF3’H1. The 5’ end sequences of STRF3’H2 was also obtained by 5’RACE twice 

(Figure. 2-6). Gene-specific primers were designed based on the preliminarily obtained 

sequence, and the first strand of cDNA generated by reverse transcription was used as a 

template for amplification, finally two full-length ORFs (STRF3’H2a and STRF3’H2b) 

were obtained.  

Gene duplication is considered a major driving of gene supplementation for secondary 

metabolism (Pichersky et al. 2000). Many plants contain multiple F3’H, like five copies of 

F3’H genes in grape genome (Castellarin et al. 2006), three copies in apple genome (Han 

et al. 2010). This time we also isolated three sequences from STR, the homology between 

STRF3’H2a and STRF3’H 2b was 99.48% (Figure. 2-7). STRF3’H1 has 79.26%, 79.06% 

nucleotide sequence identity in the coding region to both STRF3’H2a and STRF3’H2b 

respectively. But whether these three genes have certain functions in anthocyanin synthesis 

needs further study. It has been reported that three SbF3’H genes isolated from Sorghum 

bicolor, SbF3’H1 and SbF3’H2 were involved in the formation of different types of 

anthocyanins, but SbF3’H3 was not detected in all tissues tested (Shih et al. 2006). It 

suggests that although different genes were annotated as the same enzyme, these genes may 

represent different alternative splicing transcripts or members of gene families and do not 

necessarily have the same function. 
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Fig. 2-5 Electropherogram of STRF3’H1 gene 5’RACE.  

M, 100bp DNA marker; 1, The first amplified fragment; 2, The second amplified 

fragment 

Fig. 2-6 Electropherogram of STRF3’H2 gene 5’RACE.  

M, 100bp DNA marker; 1, The first amplified fragment; 2, The second 

amplified fragment 
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Fig. 2-7 ORFs of STRF3’H2a and STRF3’H2b. The difference between these two genes is only 8 bases in the 

downstream. 
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2.3.3 Structural features and homology analysis of STRF3’H protein  

Three candidate genes deduced to encode 507, 517, 517 amino acids separately. The 

predicted molecular weights of these three amino acids were 56.1, 56.9, 56.9 kDa, and the 

calculated isoelectric point were 6.82 ,7.03, 6.66, respectively. The instability index (II) of 

F3’H1 was computed to be 34.49, which can be classified as a stable protein. On the 

contrary, F3’H2a and F3’H2b were classified as unstable protein because the instability 

index (II) was computed to be 41.26 and 40.97. The grand average of hydropathicity 

(GRAVY) of F3’H1 was computed to be -0.010, which is a hydrophilic protein. However, 

the GRAVY of both F3’H2a and F3’H2b was computed to be 0.031, which means that they 

are hydrophobic proteins. 

 SOPMA predicted that the secondary structure of STRF3’H1 is mainly made up of 

alpha helix (46.75%) and random coils (37.08%), while extended strands (10.45%) and 

beta turn (5.72%) only occupied a small part. STRF3’H2a and STRF3’H2b also have 

similar structural characteristics. STRF3’H2a is composed of alpha helix (46.81%), random 

coils (35.98%), extended strands (11.80%) and beta turn (5.42%). STRF3’H2b is composed 

of alpha helix (47.39%), random coils (36.56%), extended strands (11.61%) and beta turn 

(4.45%). TMHMM online analysis of the amino acid sequences showed that STRF3’H2a 

and STRF3’H2b have parallel structures, both of them have a transmembrane domain 

located at S5 to T27, the part of M1 to P4 located inside the microsomal membrane, K28 to 

V517 located outside (Figure. 2-8a, b). However, the prediction also showed that STRF3’H1 

has no obvious transmembrane, and the entire peptide chain may be located outside 

membrane (Figure. 2-8c). Arabidopsis TT7 was also analyzed, the results were same as 

STRF3’H2a and STRF3’H2b (Figure. 2-8d). Previous research has shown that microsomal-

type cytochrome P450 is a type of membrane protein that bounds to the membrane through 
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the N-terminal transmembrane signal anchor domain to exert physiological functions 

(Murakami et al. 1994). From amino acid sequence alignment, the N-terminal of F3’H1 

was five amino acid residues less than that of F3’H2a and F3’H2b. Does this affect the 

anchoring of F3’H1 on membrane thus the structure and function? Actually, the functional 

analysis based only on the amino acid sequence is not very rigorous, and functional 

verification of F3’H is still needed.  

The amino acid sequence alignment of STRF3’H1, STRF3’H2a, STRF3’H2b with 

TT7 from Arabidopsis showed 68.2%, 66.4% and 66.2% identities; with PhF3’H (Petunia 

hybrida) showed 70.8%, 70.3% and 70.1% identities; with VaF3’H (Vitis amurensis) 

showed 75.5%, 75.4% and 74.8% identities (Figure. 2-9). And it’s obvious that all three 

deduced protein sequences contain several domains highly conserved in plant F3’Hs. Three 

F3’H-specific conserved motifs were found in STRF3’Hs amino acid sequence. All of three 

STRF3’H amino acid sequences have the motif that exactly same as “VVVAAS” (Brugliera 

et al. 1999), but “GGEK” was present at G417GER420 of STRF3’H1, “VDVKG” were 

present at “A423DVRG427” of STRF3’H1, “A433DVRG437” of STRF3’H2a and STRF3’H2b. 

In addition, four cytochrome P450-specific conserved motifs were also found. The heme 

domain “FGAGRRICAG”, which is considered to be responsible for the enzyme to bind 

carbon monoxide (Werck-Reichhart et al. 2002), was present in all three sequences. 

STRF3’Hs also bear the conserved motif “AGTDTS”, forming an oxygen-binding pocket, 

which is required for its catalytic activity (Chapple 1998). There is an E356-R359-R398 

(STRF3’H1) trinity forms a pocket lock motif to stabilize the core structure, while it also 

presents at STRF3’H2a, STRF3’H2b “E366-R369-R408” (Hasemann et al. 1995). The proline-

rich region “PPGPNPWP” considered to be the hinge motif necessary for P450 enzyme to 

anchor on the membrane, it was existed in the three genes (Murakami et al. 1994; Yamazaki 

et al. 1993). However, TMHMM speculated that F3’H2a and F3’H2b each have a 
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transmembrane domain located at the 5th to the 27th amino acid, while F3’H1 may not. 

According to amino acid sequence alignment, the N-terminal of F3’H1 was 5 amino acid 

residues less than that of F3’H2a and F3’H2b. Whether this affects the anchoring of F3’H1 

on the membrane and thus affects its structure and function needs to be further explored. 

“GGEK” is a unique motif to F3’H, an important feature that distinguishes them from their 

close relatives F3’5’H (Brugliera et al. 1999). But in sorghum and other monocots (except 

rice), it mostly presented as “GGSH” (Boddu et al., 2004). In this study the F3’H unique 

motif in STRF3’H1 presented as “GGER”, which were also found in Vitis vinifera 

(Castellarin et al. 2006), Antirrhinum kelloggii (AB547161) and other plants. 

A phylogenetic tree of several reported plant F3’H and F3’5’H protein sequences was 

shown in figure 2-10, STRF3’H1, STRF3’H2a, STRF3’H2b were clustered in the CYP75B 

clade together with other F3’Hs but further from Cyclamen F3’5’H group in evolutionary 

distance. The phylogenetic tree and multiple alignment strongly suggested that STRF3’H1, 

STRF3’H2a, STRF3’H2b encodes a typical flavonoid 3’-hydroxylase. 

2.3.4 Genomic structure analysis of STRF3’Hs  

To analyze the genomic structure of STRF3’H genes in detail, the genomic STRF3’H 

genes were separated into four regions (A, B, C, D) and amplified with four pairs of gene-

specific primers. When pairwise aligning with the full-length cDNA sequence, one intron 

was found in STRF3’H1 (Figure. 2-11a), two introns were found in STRF3’H2a and 

STRF3’H2b (Figure. 2-12a), respectively. All the introns follow standard splicing sites, 

starting at GT and ending at AG. STRF3’H2a and STRF3’H2b both have two introns, they 

have same structure and only showed 8 bp differs in the 3rd exon. While STRF3’H1 has 

only one intron, the position almost same to the first intron of STRF3’H2a and STRF3’H2b. 

Previous studies also revealed that the length of the intron of F3’Hs varies greatly, but the 
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position is relatively conservative. Most of the first intron is located 400-500 bp after the 

start codon. The number of introns of the plants F3’H gene is not fixed neither. It is common 

to have two introns, such as the F3’Hs of grape (Jeong et al. 2006), morning glory (Hoshino 

et al. 2003), apple (Han et al. 2010), while the Poaceae usually have one intron, like F3’H 

of sorghum (Boddu et al., 2004). According to a recent report, GbF3’H1 cloned from 

Ginkgo biloba L. also contains only one intron (Wu et al., 2020). Many plants have multiple 

introns in the F3’H gene, for example three introns in Arabidopsis thaliana TT7 (AF155171) 

and three in Brassica napus F3’H (Xu et al. 2007). In a rare case, IbF3’H gene (Ipomoea 

batatas L. Lam) has no introns (Zhou et al. 2012).  

Differences in STRF3’Hs between ‘Strauss’ and C. persicum were investigated at the 

genomic level. The same four sets of STRF3’H1-specific primers were used to amplify the 

entire F3’H1 of C. persicum, and four DNA fragments of the same size as those amplified 

from ‘Strauss’ were obtained (Figure. 2-11b). The analysis of STRF3’H2a, 2b also 

presented the similar results (Figure. 2-12b). 

2.3.5 Genomic PCR of CperF3’5’H  

Based on the cDNA sequence of CperF3’5’H (GQ891056), two pairs of CperF3’5’H-

specific primers were designed to amplify the entire gene of C. persicum. There was only 

one intron in CperF3’5’H (Figure. 2-13a). When we used the same two sets of CperF3’5’H-

specific primers to amplify the entire F3’5’H of ‘Strauss’, two DNA fragments of the same 

size as those amplified from CperF3’5’H were obtained (Figure. 2-13b). These indicated 

that ‘Strauss’ and C. persicum were not different at the genomic level. However, it is worth 

noting that we only compared the genomic sequences within ORF, and whether there are 

differences in the cis-acting elements, still need to be further explored. 
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Fig. 2-8 Predicted transmembrane structure domain of STRF3’H1(a), STRF3’H2a (b), 

STRF3’H2b(c), tt7(d) 
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Fig. 2-9 Multiple alignment of the deduced amino acid sequences of F3’H1, F3’H2a, F3’H2b from STR and Arabidopsis TT7 

(AF155171), PhF3’H (AF155332), VaF3’H (FJ645766). The F3’H-specific motifs “VVVAAS”, “GGEK”, and “VDVKG” are 

marked with black boxes. The black lines indicate cytochrome P450-specific conserved motifs. Arrowheads indicate an E-R-R 

triad forming the pocket locking motif for the stabilization of the core structure. 
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Fig. 2-10 Phylogenetic tree analysis of STRF3’H and other known F3’Hs and F3’5’Hs. 

Vertical line indicates F3’Hs isolated from STR in this study. CsF3’H, Camellia 

sinensis; CnF3’H, Camellia nitidissima; VaF3’H, Vaccinium ashe; VvF3’H, Vitis 

vinifera; CcF3’H, Centaurea cyanus; TeF3’H, Tagetes erecta; EbF3’H, Echinops 

bannaticus; HpF3’H, Hieracium pilosella; CiF3’H, Cichorium intybus; 

AtF3’H(TT7), Arabidopsis thaliana; MiF3’H, Matthiola incana; BnF3’H, 

Brassica napus; IhF3’H, Iris x hollandica; AaF3’H, Anthurium andraeanum; 

CpF3’5’H, Cyclamen persicum; CgF3’5’H, Cyclamen graecum.  
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Fig. 2-12 Genomic analysis of STRF3’H2a and STRF3’H2b. (a) The genomic structures 

of STRF3’H2a and STRF3’H2b. The open boxes indicate exons, the shadowed boxes 

indicate introns. There are 8 bp differs in their 3rd exon. Boxes A, B, C and D indicate 

the amplified regions that separate STRF3’H2a/b into four parts. (b) Genomic PCR of 

four separated regions of STRF3’H2a/b in ‘Strauss’ and C. persicum. A, B, C and D are 

as shown in (a). 

 

Fig. 2-11 Genomic analysis of STRF3’H1. (a) The genomic structures of STRF3’H1. The 

open boxes indicate exons, the shadowed box indicate introns. Boxes A, B, C and D 

indicate the amplified regions that separate STRF3’H1 into four parts. (b) Genomic PCR 

of four separated regions of STRF3’H1 in ‘Strauss’ and C. persicum. A, B, C and D are 

as shown in (a). 

 

b. 



49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-13 Genomic analysis of CperF3’5’H. (a) The genomic structure of CperF3’5’H.  The 

open boxes indicate exons, the shadowed box indicate intron. Boxes E and F indicate the 

amplified regions that separate CperF3’5’H into two parts. (b) Genomic PCR of two separated 

regions of CperF3’5’H in ‘Strauss’ and C. persicum. E and F are as shown in (a). 

 

a. 

b. 
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2.3.5 Expression pattern of STRF3’Hs  

The expression profiles of STRF3’Hs at different developmental stages of STR petals 

were investigated. As the results shown STRF3’Hs expressed stronger in the early stage 

and weakened gradually with the coloring of petals, which was same to Petunia (Brugliera 

et al. 1999), Eustoma grandiflorum (Takatori et al. 2005) (Figure. 2-14). Considering the 

expression patterns, genes encoding enzymes involved in flavonoid biosynthesis in 

Gentiana were classified into three groups: CHS and CHI, common enzymes necessary for 

biosynthesis of both flavone and anthocyanin are belong to Group I, they are expressed in 

all stages of flower development; Group II included F3’H and FSII, which expressed in 

early stages of flower development; Group III included F3H, F3’5’H, DFR, ANS, 3GT and 

5AT, which are expressed in late stages of flower development (Nakatsuka et al. 2005). 

STRF3’Hs in this study present same expression patter as that GtF3’H. However, F3’H 

from azalea showed a different trend, it expressed weakly at the first stage, but got the 

highest level at the second stage, and then decreased. The author considered that the 

expression of F3’H is not directly related to the accumulation of anthocyanins, because 

F3’H also abundantly expressed in some non-pigment organs (Nakatsuka et al. 2008). The 

transcription level of F3’H in the petals of blue torenia (SWB) was higher in the second 

and third stages, and these two stages were the highest accumulation levels of flavones and 

anthocyanins, while the transcription levels in other stages were almost not detected. 

However, the content of cyanidin-type-anthocyanidins was higher in transgenic torenia 

(obtained by over-expression of the F3’H in SWB), the expression of F3’H was detected 

at all stages of flowering, and the expression of F3’H gradually decreased with the opening 

of flowers (Ueyama et al. 2002). It seems that the expression of F3’H is closely related to 

the content of flavones and anthocyanins, especially cyanidin-type-anthocyanidins. 
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The expression of STRF3’H genes was detected in the leaves. STRF3’H2a in leaves 

expressed weaker than that at stage1 and stage2, but stronger than the full-opened stage. 

STRF3’H2b in leaves expressed weaker than stage1, but higher than the other three stages. 

The expression level of STRF3’H1 was higher than that of any flowering stage. High 

expression of F3’H has also been detected in the leaves of other plants, such as Arabidopsis 

(Schoenbohm et al. 2000), Perilla (Kitada et al. 2001) and Azalea (Nakatsuka et al. 2008). 

The expression levels of GbF3’H1 in ginkgo leaves were significantly higher than that in 

flowers, roots and other tested tissues, which because of this expression is associated with 

the secondary metabolism product accumulation in the corresponding organs (Wu et al., 

2020). Although we know that the expression of F3’H is related to the accumulation of 

anthocyanins, there is almost no accumulation of anthocyanins in leaves, which may be 

caused by insufficient expression of other genes in the anthocyanin synthesis pathway 

(Noda et al. 2004). On the other hand, this also suggests that F3’H plays a role in the 

synthesis of other secondary metabolites. 

2.3.6 Expression analysis of F3’Hs and F3’5’H in C. persicum and 

STR 

The transcription level of F3’Hs genes and F3’5’H gene in C. persicum and STR were 

analyzed by real-time PCR. STRF3’5’H was cloned from C. persicum (GQ891056). Gene 

special primer pairs were applied to compare the expression levels of these genes in two 

materials. Expression levels of F3’Hs and F3’5’H transcripts were relative to those of 

eEF1α. As shown in figure 2-15, the expression level of F3’Hs in STR were higher than 

those in C. persicum, especially the relative expression of F3’H1 in STR is 25 times that of 

C. persicum. F3’5’H was expressed strongly in C. persicum about 33 times that of STR.  
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Variation in flower color is generally the result of differences in either structural or 

regulatory genes involved in the flavonoid biosynthetic pathway (Tanaka et al. 2008). 

Compared with C. persicum, STR has a completely different main anthocyanin 

composition, so we compared the expression level of key genes related to their main 

anthocyanin synthesis. The expression level of F3’5’H in C. persicum was higher than that 

in STR, and the main anthocyanin component of C. persicum was Mv3,5dG. Previous study 

revealed that F3’5’H is responsible for synthesizing delphinidin and its derivatives, F3’5’H 

gene encoding this enzyme often referred to as the blue gene (Holton et al. 1994). Some 

plants, such as chrysanthemums, roses and carnations etc., cannot produce blue or purple 

flowers, partly because they lack the activity of the F3’5’H enzyme (Tanaka and Brugliera 

2013). Loss of endogenous F3’5’H transcript will cause the flower color of cyclamen to 

change from purple to red/pink (Boase et al. 2010). In the present study, is the reduced 

expression level of F3’5’H of STR responsible for the lack of Mv3,5dG accumulation in 

its flowers? There are two main causes of defective gene expression, one is a mutation in 

the gene itself and the other is a mutation in the transcription factor that regulates the 

expression of that gene. For example, due to the insertion of a retrotransposon in the first 

exon, RsF3’H (Raphanus sativus L.) lost its function and promotes the accumulation of 

pelargonidin-bases anthocyanin (Masukawa et al. 2018). We investigated the differences in 

CperF3’5’H between C. persicum and STR at the genomic level, and found no difference. 

Therefore, whether the apparently reduced expression of F3’5’H in STR is caused by the 

mutation of the associated transcription factors needs to be further explored. 

Having said that, the red petals of STR contain a large number of Pn3Nh, and F3’Hs 

was expressed extensively in STR. F3’H is a vital structural gene of flavonoid anabolism, 

which competes with FLS and DFR for substrates and controls the synthesis direction of 
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flavonoids towards the synthesis of cyanidin-based anthocyanins (Olsen et al. 2010). The 

Arabidopsis transparent testa 7 (tt7) mutant that has no F3’H function exhibits a yellow 

seed coat, and the anthocyanin accumulation level of the mutant plant is lower compared 

to wild species (Schoenbohm et al. 2000). Castellarin et al. (2006) found that the expression 

of F3’H was associated with the accumulation of cyanidin-based anthocyanins in the berry 

skin of grapevines. Overexpression of F3’H gene in I. nil cultivar ‘Violet’ can change the 

flower color of ‘Violet’ that lacks F3’H function from red to blue (Takatori et al. 2015). A 

recent study found that an indel in PsF3’H (Paeonia suffruticosa Andr.) affects the 

synthesis of cyanidin-based anthocyanins, and this may be the reason of the low 

anthocyanin content in acyanic petals. RcMF3’H1 was related to synthetic cyanidin-based 

red anthocyanins (Zhang et al. 2020). In this study the high expression level of F3’Hs and 

large accumulation of red pigment in STR slips suggested that F3’H may play a pushing 

role in the flower color formation, although this view still needs to be determined. However, 

the expression levels of these STRF3’H genes were also different, further research is needed 

to determine which one is a functional. 
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Fig. 2-14  Relative expressions of STRF3’H genes in leaves and five flowering 

stages of ‘Strauss’. (a) STRF3’H1 (b) STRF3’H2a (c) STRF3’H2b. eEF1α 

gene was amplified as an internal control. The error bar represents the 

standard error. S1,S2,S3,S4: developmental stages of STR petals. 
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Fig. 2-15 Expression analysis of F3’H genes, F3’5’H gene in C. persicum and STR. 

(a) STRF3’H1  (b) STRF3’H2a  (c) STRF3’H2b  (d) F3’5’H  

eEF1α gene was amplified as an internal control. The error bar represents the standard error. 

C.per, C.persicum; STR, ‘Strauss’ 
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2.3.7 In vitro expression of STRF3’Hs 

The recombinant vectors (pET21a-STRF3’H1, pET21a-STRF3’H2a, pET21a-

STRF3’H2b), were constructed and sequenced, and the sequences of the inserted genes 

were determined to be accurate. Transformed the plasmids with correct sequence into E. 

coli BL21(DE3) by heat shock, prepare for protein induction expression.  

By comparing different induction temperature, time, and IPTG concentration, it was 

finally decided that 20 ℃, 16 hours, 0.1 mM was the best induction condition for pET21a-

STRF3’H1; 20 ℃, 16 hours, 0.5 mM was the best induction condition for pET21a-

STRF3’H2a and pET21a-STRF3’H2b. After induction according to the optimal conditions, 

the cells were collected and lysed, the supernatant was recovered for SDS-PAGE. The 

supernatant of the crude enzyme lysate of pET21a-STRF3’H2a and the purified supernatant 

were subjected to electrophoresis. As a result, a significant band was detected between 

66kDa and 45kDa compared to the control without IPTG induction (Figure 2-16). Similar 

results were obtained by electrophoresis of crude enzyme lysate supernatant and purified 

supernatant of pET21a-STRF3’H2b (Figure 2-17). These indicated that the STRF3’H2a and 

STRF3’H2b protein can be expressed normally in E. coli under IPTG induction. However, 

SDS-PAGE of the supernatant of pET21a-STRF3 H1 crude enzyme lysate showed almost 

no bands, and its precipitation electrophoresis showed clear target bands with similar size 

to the predicted protein (Figure 2-18). It seemed that the recombinant protein of pET21a-

STRF3’H1 mostly exists in the form of inclusion bodies. There are many reasons for the 

insoluble expression of proteins, such as pressure from the external environment and 

biological limitations. Next, we will continue the attempts to reduce misreading in 

translation and synthesis by choosing proper composition, concentration and proportion of 

culture medium and proper temperature. 
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Fig. 2-16 SDS-PAGE analysis of the recombinant pET21a-STRF3’H2a 

Lane M: molecular mass marker; lane1, supernatant after 0 M IPTG induction; lane 2, 

supernatant after 0.1 mM IPTG induction; lane 3, supernatant after 0.5 mM IPTG induction; 

lane 4, supernatant after 1 mM IPTG induction; lane 5, purified supernatant after 0.5 mM IPTG 

induction. Induction condition: 20 ℃, 16 h. 

48 kDa 

63 kDa 

Fig. 2-17 SDS-PAGE analysis of the recombinant pET21a-STRF3’H2b 

Lane M: molecular mass marker; lane1, supernatant after 0 M IPTG induction; lane 2, 

supernatant after 0.1mM IPTG induction; lane 3, supernatant after 0.5 mM IPTG induction; lane 

4, purified supernatant after 0.5 mM IPTG induction. 

Induction condition: 20 ℃, 16 h. 

48 kDa 

63 kDa 
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Fig. 2-18 SDS-PAGE analysis of the recombinant pET21a-STRF3’H1 

Lane M: molecular mass marker; lane1, supernatant after 0 M IPTG induction; lane 2, 

supernatant after 0.1mM IPTG induction; lane 3, supernatant after 0.5 mM IPTG induction; lane 

4, precipitation after 0 M IPTG induction; lane 5, precipitation after 0.1mM IPTG induction; 

lane 6, precipitation after 0.5mM IPTG induction. 

Induction condition: 20 ℃, 16 h. 
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2.4 Concluding remarks 

F3’H and F3’5’H are the key enzymes involved in anthocyanin biosynthesis, which 

affect the direction of pigment formation and the type of final pigment. In this study, three 

ORFs of F3’H gene were cloned from STR by RACE method. The results of real-time PCR 

showed that the expression level of STRF3’Hs were the highest at the early stage of flower 

development, decreased with flower development and reached the lowest at the flowering 

stage. Therefore, we speculate that STRF3’Hs are involved in the formation and 

accumulation of anthocyanin precursors. STRF3’Hs also expressed strongly in leaves with 

very low anthocyanin content, which indicates that F3’H also plays an important role in 

other secondary metabolism pathways besides anthocyanin.  

STR is a cultivar of C. persicum, the mainly pigment of STR has been changed from 

Mv3,5dG to Pn3Nh. F3’H and F3’5’H are the key enzymes in these two branches of 

pigment synthesis, so we compared the expression of F3’H and F3’5’H in these two flowers. 

The expression level of F3’H in red STR is much higher than F3’5’H, while F3’5’H is 

expressed stronger in purple C. persicum and weaker in STR. This suggested that the 

variation of STR flower color is related to F3’H and/or F3’5’H. It may be that STR lost the 

function of F3’5’H and/or gained the function of F3’H in the process of variety 

improvement. We speculate that the weaker expression of F3’5’H in STR is due to the 

mutation of transcription factor or the gene itself. So, we compared the genomic region of 

F3’5’H in ‘Strauss’ and C. persicum, and there is no difference between them. In addition, 

we also analyzed the genomic region of F3’Hs in Strauss and C. persicum, and found that 

they have the same structures. Whether the mutation of transcription factors leads to 

changes in gene expression levels, which affects the production and accumulation of major 

anthocyanins, needs further research.  
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In this study, the recombinant plasmids pET21a-STRF3’H1, pET21a-STRF3’H2a, and 

pET21a-STRF3’H2b were constructed by using the prokaryotic expression vector of 

pET21a, and the optimal conditions for inducing proteins were determined. The expression 

levels of pET21a-STRF3’H2a and pET21a-STRF3’H2b were higher when induced at 0.5 

mM IPTG at 20 ℃ for 16 hours, and the molecular weights of induced proteins were similar 

to those of the proteins encoded by the two genes. The recombinant protein pET21a-

STRF3’H1 has no protein band detected in the supernatant, but exists in the form of 

inclusion bodies. In the future, we could try to use the vector with fusion tag to improve 

soluble expression, or use the yeast eukaryotic system for protein expression. 
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Chapter 3 Identification of 5-O-glucosyltransferases involved in 

anthocyanin biosynthesis from Cyclamen purpurascens 

3.1 Introduction 

In different plants, the biosynthesis of anthocyanins undergoes different modifications, 

including glycosylation, methylation, acylation and so on (Yamazaki et al. 1999). Through 

the synergistic effects of these modifications, more diverse kinds of anthocyanins can be 

formed, so as to present a variety of floral colors. However, glycosylation always precedes 

other modifications, and it plays a constructive role in changing the hydrophilicity of 

anthocyanins, increasing their solubility and chemical stability, as well as facilitating their 

storage and transport in cells (Vogt and Jones, 2000). In plants, these glycosylation 

reactions are controlled by a specific family of glycosyltransferases (GTs). GTs is a multi-

member family of transferases widely existing in organisms that catalyze the formation of 

glycosidic bonds between specific glycosylates and receptors (Meech et al. 2019). 

According to the similarity of sequence, conserved motifs and catalytic mechanism, GTs 

can be classified into 111 subfamilies (http://www.cazy.org/fam/acc_GT.html).  

Uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), belong to the 

GT1 family, are a major class of enzymes that play a vital part in plant secondary 

metabolism. Flavonoid glycosylation is mainly catalyzed by UGTs. Plant UGT mainly uses 

small molecular compounds such as flavonoids, phenolic acids, terpenoids and plant 

hormones as glycosyl acceptors, and UDP-glucose, UDP-galactose or UDP-rhamnose as 

glycosyl donors (Lim et al. 2004; Bowleset al. 2006). The first UGT in plants was 

accidentally discovered by Nobel Laureate Barbara McClintock while studying the genetic 

instability of maize transposons. The Bronze1 gene (X13500), which confers dark 

http://www.cazy.org/fam/acc_GT.html
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pigmentation in corn kernels, was later shown to encode a flavonoid glycosyltransferase 

(UFGT) (Dooner & Nelson, 1977). UGTs have different regional selectivity in flavonoid 

glycation reactions. According to the different catalytic sites, UGT can be divided into 3-

O-glycosyltransferase, 5-O-glycosyltransferase, 7-O-glycosyltransferase and the 

glycosyltransferase that catalyzes the generation of diglycosides. For example, anthocyanin 

3’,5’-O-glucosyltransferase (UA3’5’GT) cloned from the petals of Clitoria ternatea L., 

could catalyze the glycosylation of 3’-OH position and 5’-OH position of delphinidin 3-O-

(6’’-O-malonyl)-β-glucoside successively to produce delphinidin 3-O-(6’’-O-malonyl)-β-

glucoside-3’,5’-di-O-β-glucoside (Kogawa et al. 2007). In addition, flavonoid C-

glycosyltransferase has also been isolated from some plants (Noguchi et al. 2008; Brazier-

Hicks et al. 2009; Falcone Ferreyra et al. 2013).  

At present, the most studied glycosyltransferase gene is 3GT gene, which is one of the 

key enzymes in the middle and downstream of anthocyanin biosynthesis pathway. Its 

function is to convert unstable anthocyanins into stable anthocyanins, and from colorless 

to colored, so that the maximum absorption spectrum shifts to the ultraviolet end. However, 

there are relatively few studies on A5GT, which catalyzes the glycosylation of anthocyanin 

at 5-O-position (Figure 3-1), and the anthocyanin-glucoside generated is more stable than 

mono-glycoside. Yamazaki et al. (1999) cloned cDNA of A5GT from Perilla frutescens for 

the first time by using mRNA differential display method. Since then, A5GT has been 

isolated from other plants: A5GT from Dahlia was reported in 2001, and revealed to have 

different substrate specificity with Perilla (Ogata et al. 2001); seven A5GT candidates were 

identified from Gentiana trifloral, of which only Gt5GT7 was verified to have A5GT 

enzyme activity (Nakatsuka et al. 2008); A5GTs were also isolated and characterized from 

monocotyledonous flower plants, Iris hollandica (Imayama T. et al. 2004), Freesia hybrida 
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(Ju et al. 2018). It can be concluded from the above relevant studies that the expression 

level of A5GT is correlated to the accumulation of major pigments in these plants, and 

A5GT from different plants has a wide range of substrate specificities. But as far as we 

know, A5GT of cyclamen has hardly been characterized.  

Cyclamen is loved by people because of its rich ornamental trait, and is widely used 

in potted plants and garden greening. Most of commercial cultivars are obtained through 

the natural mutation and hybridization of wild Cyclamen persicum, they always have 

various color, shape, size, but no-good fragrance (Grey-Wilson 2002). Another wild species, 

C. purpurascens, is considered a precious material for the cultivation of aromatic cyclamen. 

However, in the early days, it was difficult to cross between C. purpurascens and C. 

persicum cultivars, because C. purpurascens always have very small and few flowers. 

Furthermore, histological observation showed that the fertilized ovule in C. purpurascens 

and C. persicum cultivars cross combination contained weak hybrid embryos without 

endosperm, and the endosperm eventually aborted (Ishizaka, 2018). To solved the problem 

of strong cross-incompatibility with C. persicum and other species, Ishizaka and Uematsu 

(1992) established the ovule cultivation system, which is a valuable method for creating 

interspecific Cyclamen hybrids. Subsequently, chromosome doubling technology 

overcomes seed sterility caused by lack of affinity between different genomes (Ishizaka 

and Uematsu 1995b). So far, C. purpurascens can really be used in the cultivation of 

fragrant cyclamen. Interestingly, all the F1 progenies of the cross between C. purpurascens 

and C. persicum cultivars contain 3,5-diglucoside type anthocyanins in petals, which is 

same to C. purpurascens (the major pigment is Mv3,5dG) (Takamura et al. 2005). For 

example, F1 progenies of the cross between C. purpurascens and ‘Strauss’ have a pink slip 

with peonidin 3,5-diglucoside, cyanidin 3,5-diglucoside, and malvidin 3,5-diglucoside, and 



64 

 

a deep purple eye with malvidin 3,5-diglucoside, although the mainly pigment of ‘Strauss’ 

is Pn3Nh (Takamura et al. 2004). Fragrance cyclamen cultivar ‘Kaori-no-mai’ (KM), 

produced by crossing of C. persicum cultivars and C. purpurascens, accumulated Mv3,5dG 

as a dominant anthocyanin component and present purple-colored flower. While its ion 

beam-irradiated mutant ‘Mayabi-no-mai’ (MY), with red-purple-colored flower, 

accumulated malvidin 3-glucoside (Mv3G) (Ishizaka et al. 2012). It seems that the deletion 

of A5GT gene caused the change of flower color of MY and A5GT may make positive 

contribution to cyclamen flower color formation. Previously, three 5GT-like genes 

(Cpur5GTs) have been isolated partially from C. purpurascens. Among them, Cpur5GT2 

was most likely to be a functional A5GT (Hase et al. 2012). This time we isolated the full-

length ORF of Cpur5GT2 and analyzed the enzyme activity in vitro.  

 

3.2 Plant materials 

Cyclamen was grown in greenhouse at Saitama Institute of Technology, Japan. The 

petals, leaves, immature anthers, and petioles of C. purpurascens were collected and 

immediately frozen in liquid nitrogen then stored at - 80 °C until required. 

Fig. 3-1 Formation of 3,5-diglucoside type anthocyanin by anthocyanin 5-O-

glucosyltransferase. R1, R2 could be substituted with -OH, -OCH3. 
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3.3 Method 

3.3.1 Extraction of genomic DNA 

Genomic DNA was extracted from leaves of C. purpurascens. Detailed descriptions 

as 2.2.1. 

3.3.2 Extraction of total RNA and synthesis of first-strand cDNA 

Total RNA was extracted from different tissues (young petals, full-opened petals, 

immature anthers, leaves and petioles) of C. purpurascens. RNA extraction method and 

cDNA synthesis are detailed in 2.2.2 and 2.2.3. 

3.3.3 Isolation of Cpur5GT genes 

Based on the obtained gene fragments (Cpur5GT1, Cpur5GT2 and Cpur5GT3) (Hase 

et al. 2012), 3’ RACE and 5’ RACE methods were carried out using the 5’/3’-RACE 2nd 

Generation Kit (Merck, Germany), to amplify unknown sequence upstream and 

downstream of Cpur5GTs. Gen-special primers were designed to obtained the full-length 

ORFs (Table 2). The amplified target gene fragments were subjected to gel recovery, ligated 

to pTAC-2 Easy vector (BioDynamics Laboratory Inc., Japan), transformed into E. coli 

JM109 competent cells, screened with blue and white spots, finally positive clones were 

picked for sequencing (Model 3500, Applied Biosystems) using the BigDye® Terminator 

ver. 3.1 Cycle Sequencing Kit (Applied Biosystems, MA, USA). 

3.3.4 Bioinformatics analysis of Cpur5GT genes 

Use the Basic Local Alignment Search Tool in NCBI to perform homologous sequence 

alignment of the amino acid sequences encoded by Cpur5GT genes. Predict the physical 
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and chemical properties and other information by online software ProtParam 

(http://web.expasy.org/protparam/). Protein the secondary structure prediction was carried 

out by Network Protein Sequence Analysis (Combet et al. 2000) using self-optimized 

prediction method with alignment (SOPMA) (Geourjon and Deléage 1995). The 

transmembrane regions of proteins encoded by Cpur5GT1 and Cpur5GT2 were predicted 

by online tool TMHMM (http://www.cbs.dt u.dk/services/TMHMM/). Multi-alignment 

analysis was performed by the Clustal W program (Thompson et al. 1994), the deduced 

amino acid sequence of Cpur5GTs were aligned with other A5GT proteins that obtained 

from the DDBJ/GenBank DNA databases. Phylogenetic trees were constructed using the 

Neighbor-Joining method (Saitou et al. 1987) with MEGA7 (Kumar et al. 2016). 

3.3.5 Cpur5GT genes expression analysis 

To investigate the expression levels of the isolated Cpur5GT genes in different tissues 

(young petals, full-opened petals, immature anthers, leaves and petioles), real-time PCR 

were performed on the Quant Studio™ 1 System with Power Up™ SYBR® Green Master 

Mix (Thermo Fisher Scientific). The reaction system in a total volume of 20 μl containing 

100 ng of template cDNA, 10 μM of primer, 10 μl of 2 × Master Mix, and implemented 

under the standard cycling mode. The eEF1α genes were amplified as an internal control 

under the same conditions. Each experiment was done in 4 replicates, 2−ΔΔCT method was 

used to analyze the relative expression level of target genes (Livak and Schmittgen 2001). 

See 2.2.6 for specific operation steps. 

3.3.6 Protein expression and purification 

The plasmid pTAC2-Cpur5GT2 with correct sequence and pET16b expression vectors 

are extracted and digested by the NdeI and BamHI. The digested products were recovered 
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and ligated at NdeI and BamHI restriction sites with ligation high (Toyobo, Japan). 

Transformed the recombinant expression vector pET16b-Cpur5GT2 into E. coli strain 

BL21 (DE3) competent cells (Novagen). Picked the single colony of E. coli BL21 (DE3) 

embracing the reconstructed plasmids and cultured at 37 ℃ in LB liquid medium 

containing 100 μg ml-1 AMP untilled the OD600 was about 0.4-0.6, next induced the 

expression of the fused protein with 5 μM, 10 μM, 20 μM IPTG at 28 ℃ for 16 h. Recovered 

the expressed product, resuspended in Fast BreakTM Cell Lysis Reagent (Promega) then 

purified the fusion protein utilizing the HisLinkTM Spin Protein Purification System 

(Promega) in terms of the manufacturer’s protocol. Used SDS-PAGE (15%) to detect the 

expression of the target protein, took the uninduced recombinant expression vector as a 

control. After determining the induction concentration of IPTG, perform a mass expression, 

see 2.2.10 for specific operations. Protein of mass expression was purified with Capturem 

TM His-Tagged purification maxiprep columns.  

Quantification of purified protein, refer to Bradford method (Bradford 1976). Prepare 

dye reagent (Bio-Rad protein assay, USA) in a volume of 1:4 dye reagent and deionized 

water, and filter through Whatman #1 filter. Prepare five BSA (Bio-Rad protein assay, USA) 

standards of different concentrations (0.078 mg ml-1, 0.156 mg ml-1, 0.39 mg ml-1, 0.78 mg 

ml-1) to make a standard curve. Pipet 100 μl of each standard and sample solution into a 

clean test tube. Add 5.0 ml of diluted dye reagent to each tube and mix. Incubate at room 

temperature for 10 min. Measure absorbance at 525 nm. Make a standard curve and 

calculate the sample concentration. 

3.3.7 Enzyme assay of Cpur5GT2 

The enzyme activity in vitro assay for Cpur5GT2 was performed, the reaction mixture 



68 

 

consisting 35 μg purified protein, 2mM UDP-glucose or UDP-galactose as donor, 0.2 mM 

3-glucoside type anthocyanidins (delphinidin 3-glucoside [Dp3G], cyanidin 3-glucoside 

[Cy3G], malvidin 3-glucoside [Mv3G], peonidin 3-glucoside [Pn3G], pelargonidin 3-

glucoside [Pg3G]), petunidin 3-glucoside [Pt3G]) as acceptor, 100 mM Tris (pH 7.5), and 

the final volume was made up to 200 μl with pure water. For determine the Km value for 

UDP-glucose, kinetic parameters, all the reaction mixtures with a final reaction volume of 

200 μl, were consisted 35 μg recombinant Cpur5GT2 protein and 100 mM Tris-HCl buffer 

(PH 7.5). For the measurement of the Km for acceptor substrate (Mv3G), each assay 

contained 2 mM UDP-glucose with different concentrations of Mv3G ranging from 0.1 to 

1.0 mM. For determine the Km value for UDP-glucose, each assay contained 0.2 mM 

Mv3G and a UDP-glucose concentration that varied from 0.125 to 2 mM. After incubated 

the mixture at 28 °C for 1 h, 10% phosphoric acid was used to terminate the reaction. Then 

centrifugation of every mixture at 15,000 rpm for 5 min, the supernatant was filtrated 

through a 0.22 mm filter (Shimadzu, Japan) and subjected to high-performance liquid 

chromatography (HPLC) analysis. A Prodigy ODS-3 reversed-phase column (4.6×100-mm 

3-μm 100Å, Phenomenex) was used to separate the metabolites at 30 ℃. The mobile phase 

consisted of 1.5% (v/v) phosphoric acid(A), 1.5% (v/v) phosphoric acid, 20% (v/v) acetic 

acid and 25% (v/v) acetonitrile solution (B). The elution program was proceeded over 60 

min, at a flow rate of 0.3 ml min-1. Quantify the reaction products by measuring the 

absorbance peak area at 525 nm. 
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Table 2. Primer used in Chapter 3 

Primer Sequence (5’-3’) 

Cpur5GT1-FP ATGTATCCAAACAGTCCTTCGG 

Cpur5GT1-FP1 CCAGAGGGCGGAGCCTAATCG 

Cpur5GT1-FP2 TACTAGAATTTGCTTGGGGGC 

Cpur5GT1-RP TTATTTCTCTAGCAACACATTGACG 

Cpur5GT1-RP1 TCCACAGAAATTGGTGGCTGC 

Cpur5GT1-RP2 TACTTCCTCTTGTGCACACC 

Cpur5GT1-RP4 ATTGAATATCTCATCGTCGGG 

Cpur5GT1-RP5 CTTTCTCCATGAGAGCACGG 

Cpur5GT2-FP ATGGAGAATCGGTATCGTGTTC 

Cpur5GT2-FP1 ACTTCAACGGCTATAGCGAGG 

Cpur5GT2-FP2 AGCAACAAATGGAGGAGATCG 

Cpur5GT2-RP TTAATATTCGACAACACCTCTAATCTC 

Cpur5GT2-RP1 GTGAGCACCATTCTACTATTTT 

Cpur5GT2-RP2 CATTAGTGCTTTGGTCTGTCC 

Cpur5GT2-RP3 TTATCTCCTCAACTGCTTCGG 

Cpur5GT3-RP1 CTCCGAAAGAATTGTCCGACG 

Cpur5GT3-RP2 AAGAAAGAGGGCAAGTCACG 

NdeI Cpur5GT2-FP CAT ATGGAGAATCGGTATCGTGTTC 

BamHI Cpur5GT2-RP GGATCC TTAATATTCGACAACACCTCTAATCTC 

eEF1aFw CTGGTGGTTTTGAGGCTGG 

eEF1aRv CTGGCCAGGGTGGTTCATGAT 
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3.4 Results and discussion 

3.4.1 Cloning and biochemistry analysis of Cpur5GTs 

On the basis of the existed gene fragments Cpur5GT1, Cpur5GT2 and Cpur5GT3, we 

amplified their complete ORFs by RACE method. Sequencing results showed that 

Cpur5GT1 and Cpur5GT3 have identical nucleic acid sequences, and the original 

differences in the sequences of the two gene fragments was probably due to the mutation 

introduced by the Taq polymerase during PCR. So, we assumed two candidate genes 

Cpur5GT1 and Cpur5GT2, they encoding 369 and 468 amino acid residues respectively. 

Using the CD-Search online tool in the NCBI website to analyze and predict the conserved 

domains of the protein encoded by Cpur5GT1 and Cpur5GT2, the results showed that 

Cpur5GT1 contains a typical glycosyltransferase domain, located between the 186 th and 

303 th amino acids from the N-terminal, and belongs to the GTB-type glycosyltransferase 

superfamily; Cpur5GT2 also contains a typical glycosyltransferase domain, located 

between the 269 th and 395 th amino acids from the N-terminal, and belongs to the GTB-

type glycosyltransferase superfamily (Figure 3-2a,b ). 

The physical and chemical properties of Cpur5GTs were analyzed by ProtParam 

(http://web.expasy.org/protparam/). The pI of Cpur5GT1 was 5.09, Cpur5GT2 was 5.0, the 

molecular weight of Cpur5GT1 was 41.45 kDa, while Cpur5GT2 had a similar molecular 

mass (52.96 kDa) as Dv5GT (53 kDa), Ph5GT (52 kDa) and Va5GT (54 kDa) (Ogata et al. 

2001; Yamazaki et al. 2002; He et al. 2015).The instability index (II) of Cpur5GT1 and 

Cpur5GT2 were computed to be 37.29 and 33.42, respectively, both of them can be 

classified as a stable protein. The GRAVY of Cpur5GT1 and Cpur5GT1 was computed to 

be -0.0142, -0.283, respectively, that means they are hydrophilic protein. We also analyzed 

http://web.expasy.org/protparam/).de
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the genomic structure of the Cpur5GT1 and Cpur5GT2, the results show that there are no 

introns in their respective coding regions. 

 SOPMA predicted that the secondary structure of Cpur5GT1 is mainly made up of 

alpha helix (44.44%) and random coils (33.06%), while extended strands (14.63%) and 

beta turn (7.86%) only occupied a small part. Cpur5GT2 also have similar structural 

characteristics, composed of alpha helix (41.88%), random coils (35.68%), extended 

strands (15.81%) and beta turn (6.62%). The transmembrane structure of proteins encoded 

by Cpur5GT1 and Cpur5GT2 was predicted and analyzed by TM pred tool. And the results 

showed that the proteins encoded by the two genes did not have transmembrane regions 

(Figure 3-3a, b). When analyzed the transmembrane structure of Ph5GT (Petunia hybrida) 

and found that it is more similar to Cpur5GT2 (Figure 3-3c).  

Comparison of the amino acid residues of Cpur5GT1 and Cpur5GT2, it only showed 

24% identities (Figure 3-4). All aligned amino acid sequences had a conserved C-terminal 

domain of the UGT superfamily, which was known as plant secondary product 

glycosyltransferase (PSPG) box (Mackenzie et al.1997). The PSPG box is considered as 

the UDP-glucose binding region, composed of 44 amino acids, and the highly conserved 

amino acids are W1, Q4, L8, H10, H19CGWNS24, E27, P39, E43/D43, Q44 (numbered in PSPG 

box) (Caputi et al. 2012). Tryptophan (Trp, W) at position 22 can correctly locate UDP 

glucuronic acid, while arginine (Arg, R) can correctly locate UDP glucuronic acid. Serine 

(Sre, S) at position 23 is highly conserved in UDP glucuronic acid translocase (Shao et al. 

2005). Notably, glutamine (Gln, Q) and histidine (His, H) are highly conserved as the last 

amino acid residue of the PSPG box in glucosyltransferase and galactosyltransferases, 

respectively (Kubo et al. 2004). Since the last amino acid in the PSPG domain of Cpur5GT1 

and Cpur5GT2 was glutamine (Gln, Q), we conjectured that both of them preferred UDP-
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glucose as the main glycation donor.  

A neighbor-joining phylogenetic tree of the putative Cpur5GTs and several 

functionally characterized plant UGTs was present (Figure 3-5), it was obviously divided 

into three clusters upon the regiospecificity of UGTs for the aglycone substrate. The 

putative Cpur5GTs were clustered in two different branches, Cpur5GT1 and other 3GTs 

were gathered in Cluster Ⅰ, Cpur5GT2 and other 5GTs, like Va5GT whose activities had 

been tested in vitro, were gathered in Cluster II (He. et al. 2015).  

 

 

  a. 

b. 

Fig.3-2 Predicts conservative structure domain of the protein encoded by Cpur5GTs 

(a)Cpur5GT1 (b) Cpur5GT2 
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Fig. 3-3 Predicted transmembrane structure domain of (a) Cpur5GT1, (b) Cpur5GT2, 

(c) Ph5GT (AB027455, Petunia hybrida) 

a. 

b. 

c. 
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Fig.3-4 Alignment of the deduced amino acid sequences of Cpur5GT1, Cpur5GT2 and other published 5GTs. Identical 

amino acid residues are shaded in black, similar in grey. The PSPG box is underlined, the highly conserved amino acid 

residues in PSPG box are marked with triangles. 
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Fig. 3-5 Phylogenetic tree of Cpur5GT and GT members from other plant species. Three 

clusters were presented upon the regiospecificity of UGTs for the aglycone substrate. The 

putative Cpur5GT1 and other 3GTs were gathered in Cluster Ⅰ, the putative Cpur5GT2 were 

located in Cluster II with other 5GTs. Ih3G(AB161175), Iris hollandica; Va3GT(FJ169463), 

Vitis amurensis; Ph3GT(AB027454), Petunia x hybrida; Ib3GT(JN258961), Ipomoea 

batatas; Ih5GT(AB113664), Iris hollandica; Eg5GT-A(AB078961), Eustoma grandiflorum; 

Eg5GT-B(AB078962), Eustoma grandiflorum; Gt5GT7(AB363839), Gentiana trifloral; 

Va5GT(KF996717), Vitis amurensis; Pf5GT(AB013596), Perilla frutescens; 

Sn5GT(MT032188), Solanum nigrum; Ph5GT(AB027455), Petunia x hybrida; 

Aa7GT(AB692769), Agapanthus africanus; Cm7GT(AB968231), Campanula medium 
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3.4.2 Expression pattern of Cpur5GT genes 

The expression profile of two Cpur5GTs in young petals (the paler pigmented stage), 

full-opened petals, immature anthers, leaves and petioles were surveyed by real-time PCR, 

two genes expressed scarcely in immature anthers, significantly different in other tissues. 

Higher transcripts of Cpur5GT1 were observed in leaves, petioles, young petals, and lower 

in full-opened petals (Figure 3-6a). Whereas, Cpur5GT2 expressed most strongly in full-

opened petals, 10 times that of the leaves and 50 times that of the young petals (Figure 3-

6b). The expression patterns of some genes that related to flower coloration change with 

the development of flowering. For example, Akita et al. (2018) have identified a functional 

co-pigmentation-related FLS gene from C. purpurascens (CpurFLS2). This gene strongly 

expressed at the early stage of flower development, and reduced expression in full opened 

flowers. While, Cpur5GT2 was observed strong expression at later stage and weak 

expression at early stage of flower development (Figure 3-6b).Prior studies pointed out that 

the expression of A5GT was closely related to the accumulation of bis-glycosidic 

anthocyanins: the transcription levels of Va5GT in berry skins of Vitis amurensis intensity 

increased with the cumulation of their mainly anthocyanins (He et al. 2015); in Freesia 

hybrida, Fh5GT1 and Fh5GT2 were expressed in all the stages of flower development, and 

got the highest expression level when petals were completely pigmented (Ju et al. 2018). 

According to the classification of genes involved in anthocyanin biosynthesis in Gentiana 

3GT and 5AT that catalyze the later steps of anthocyanin biosynthesis belong to group III 

(Nakatsuka et al. 2005). Group III were not expressed or expressed at a very low level at 

the first stage of flower development, but their expression increased with flower 

development before the flower got full opened. Cpur5GT2 was responsible for downstream 

modification in the anthocyanin synthesis pathway, its expression pattern in floral organs 
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was similar to that of 3GT and 5AT in Gentiana. Moreover, the tissue-specific expressions 

of Cpur5GT2 resembled Fh5GTs expressed higher in pigmented petals than leaves and 

other tissues (Ju et al. 2018).  

Combined with gene expression patterns and the bioinformatic analysis of the deduced 

amino acid sequences, we more suspected that Cpur5GT2 rather than Cpur5GT1 took a 

part in flower coloration in C. purpurascens.

 (a) Expression pattern of Cpur5GT1 (b) Expression pattern of Cpur5GT2 

(c) Different tissues of C. purpurascens 

YP: young petals OP: full-opened petals   IA:  immature anthers 

LE:  leaves   PE: petioles 

Fig. 3-6 Expression analysis of Cpur5GTs in different tissues 
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3.4.3 Expression of recombinant Cpur5GT2 in vitro 

The recombinant plasmid pET16b-Cpur5GT2 was introduced into E. coli BL21 (DE3) 

cells and expressed under IPTG induction to determine the in vitro activity. SDS-PAGE 

analysis showed that the molecular mass of the crude protein induced at 5 μM,10 μM, 20 

μM IPTG was all approximately equal to the expected molecular weight of the Cpur5GT2 

protein (52 kDa). Finally, 5 μM IPTG was determined as the optimal concentration for 

inducing recombinant soluble Cpur5GT2 protein, and got a purified target protein band 

(Figure 3-7). Expanded cultivation E. coli BL21 (DE3) embracing the reconstructed 

plasmids pET16b-Cpur5GT2 and induced with 5 μM IPTG at 28 ℃ for 16 h. In order to 

calculate the concentration of the target protein, we took different concentrations of BAS 

as samples, measured the absorbance at 525 nm, and made a standard curve 

y=0.9283x+0.0537 (R2=0.9993). From this calculation, the purified target protein 

concentration is 0.523 mg ml-1. 

3.4.4 Enzyme assay of recombinant Cpur5GT2 

To determine the acceptor specificity, UDP-glucose was used as the glycosyl donor, 

six potential substrates were used as acceptors to react with the purified recombinant 

Cpur5GT2 protein, and the products were detected by HPLC. When incubated with six 

kinds of anthocyanidin 3-glucoside as substrates, additional peaks were formed, which 

were identified as their corresponding anthocyanidin 3,5-diglucoside based on the retention 

time and UV spectrum of standard samples (Figure 3-8). Especially for Mv3G, Cpur5GT2 

showed a higher relative activity (Table 3). Previous reports indicated that A5GTs always 

exhibited the maximum enzymatic activity to the precursors of their primary anthocyanins. 

For Perilla frutescens5GT, Cy3G was the most preferable substrate than other examined, 
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as cyanidin-derived anthocyanins were mainly cumulated in its red leaves (Yamazaki et al. 

1999). Since cyanidin-, pelargonidin- derived anthocyanins were the main pigment in 

Dahlia variabilis, Dahlia5GT showed a higher affinity for Cy3G and pelargonidin 3-

glucoside (Pg3G), but very low relative activity for Dp3G that has not been detected in 

Dahlia yet (Ogata et al. 2001). In our study, despite cyanidin 3,5-diglucoside (Cy3,5dG), 

delphinidin 3,5-diglucoside (Dp3,5dG), peonidin 3,5-diglucoside (Pn3,5dG), pelargonidin 

3,5-diglucoside (Pg3,5dG) and petunidin 3,5-diglucoside (Pt3,5dG) have not been 

identified in C. purpurascens, Cpur5GT2 can still catalyze glycosylation at the 5-hydroxyl 

position of their 3-O-glycoside precursors, and has higher relative activity to Dp3G and 

Cy3G (Table 2). These indicated that Cpur5GT2 has broad substrate specificity. The mainly 

anthocyanins in the slips of the hybrids of C. purpurascens × C. persicum cultivars is 3,5-

diglucoside type, and some scholars have pointed out that the glycosylation of anthocyanins 

in the slips may be caused by genes in C. purpurascens genome (Takamura et al. 2005; 

Yamazaki 2018). We speculated that it is precisely because of the broad substrate specificity 

of Cpur5GT2 that hybrids of C. purpurascens × C. persicum cultivars have different 3,5-

diglucoside types of anthocyanins. However, the acceptor substrate specificity of 

Cpur5GT2 was different with Va5GT (Vitis amurensis Rupr. cv. ‘Zuoshanyi’ grape), which 

preferentially glycosylated O-methoxylated anthocyanins (Mv3G, Pt3G, Pn3G) rather than 

their hydroxylated counterparts (Dp3G, Cy3G) (He et al. 2015). Many scholars have also 

argued that UGTs involved in plant secondary metabolism always have higher 

regiospecificity or regioselectivity to specific positions of hydroxyl groups, rather than the 

structure of sugar acceptors (Sun et al. 2016; Vogt and Jones 2000).  

For sugar donor specificity analyses, UDP-glucose and UDP-galactose were tested as 

glycosyl donors respectively, with Mv3G as acceptor. However, the results showed that 

UDP-galactose could not serve as a sugar donor (Figure 3-9), which was consistent with 
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our prediction and was similar to the capability of Dv5GT and Va5GT (Ogata et al. 2001; 

He et al. 2015). The Km value for Mv3G was 79.2 μM against UDP-glucose as the glycosyl 

donor, and the Vmax value for M3,5dG formation was 18.6 nM min-1 mg-1. The apparent 

Km value for UDP-glucose of 454 μM and a Vmax value of 18.1 nM min-1 mg-1 were 

obtained. These results are comparable with Km values of Va5GT (80.9 μM for Mv3G and 

0.213 mM for UDP-glucose, respectively) (He et al. 2015). 

Anthocyanin biosynthesis is a complex process and each enzyme does not act 

independently, the relative concentration of potential substrates may be one of the most 

crucial factors determining its activity in plants. Just as Pt3G and Pg3G that could be served 

as substrate for Cpur5GT2 in vitro, but no petunidin-derived anthocyanins have been 

detected in C. purpurascens, C. persicum cultivars and their interspecific hybrids (Ishizaka 

2018). Of course, it cannot be excluded that there are other A5GTs in C. purpurascens, 

which have different relative activities to various anthocyanin substrates, since UGTs in 

flavonoid biosynthesis are usually encoded by a multi-gene family in many plants 

(Yonekura-Sakakibara and Hanada 2011). The above results revealed that Cpur5GT2 

exhibited the activity for transferring the glucose moiety from UDP-glucose to the 5-

position of anthocyanidin 3-glucoside, and displayed a broad substrate specificity.  

To determine the function of Cpur5GT2 in detail, we will analyze the substrate 

specificity of Cpur5GT2 using other flavonoids such as flavonols. Moreover, to reveal the 

relationship between Cpur5GT2 and flower-coloration in cyclamen, the analysis of 

Cpur5GT2-like gene in the 5gt mutation (ex. MY, Ishizaka et al. 2012) will also be explored. 
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Fig. 3-7 SDS-PAGE analysis of the recombinant pET16b-Cpur5GT2 

Lane M: molecular mass marker; lane1, 0 IPTG; lane 2, 5 μM IPTG; lane 3, 10 μM IPTG; 

lane 4, 20 μM IPTG; lane 5, purified recombinant protein; Induction condition: 28 ℃, 16 h. 
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Fig. 3-8 HPLC analysis of Cpur5GT2 reaction products obtained from the in vitro enzyme 

assay. (A-L) Six potential substrates including Mv3G (A, B), Dp3G (C, D), Pt3G (E, F), Cy3G 

(G, H), Pn3G (I, J) and Pg3G (K, L) were incubated with (B, D, F, H, J, L) or without (A, C, 

E, G, I, K) the purified Cpur5GT2. 

Retention time (min) 
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Fig. 3-9 HPLC analysis of Cpur5GT2 reaction product obtained from the in vitro 

enzyme assay. The reaction used Mv3G as the acceptor substrate and UDP-

galactose as the sugar donor. 

Retention time (min) 



86 

 

 

Table 3. Relative activity of Cpur5GT against several potential substrates 

a Relative activity analyses were performed with UDP-glucoside as the donor. The amount 

of reaction product was calculated from the area of the HPLC chromatogram recorded at 

525 nm. The activity of Cpur5GT2 against malvidin 3-glucoside (Mv3G) was considered 

100 %, which was used to determine its relative activity against other substrates. 

 

 

 

 

 

 

 

 

 

Substrate Product Relative activity (%) 

Mv3G Mv3,5dG 
100

a

± 2.2 

Dp3G Dp3,5dG 86.8 ± 3.3 

Pt3G Pt3,5dG 18.8 ± 2.3 

Cy3G Cy3,5dG 78.3 ± 12.4 

Pg3G Pg3,5dG 21.6± 3.9 

Pn3G Pn3,5dG 72.4 ± 7.1 
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3.5 Concluding remarks 

This study has confirmed the complete ORF of A5GT from cyclamen for the first time. 

Cpur5GT1 encoding 369 amino acid residues and the molecular weight of Cpur5GT1 was 

41.45 kDa. Cpur5GT2 encoding 468 amino acid residues, the molecular mass is 52.96 kDa, 

which is similar to the molecular weight of A5GT of other plants with established functions. 

Sequence alignment shows that they all have the UGT superfamily conserved PSPG 

domain. However, phylogenetic analysis shows that Cpur5GT1 and 3GTs /UFGT from 

other plants are clustered together, while Cpur5GT2 and other A5GTs are clustered together. 

Therefore, we preliminarily infer that Cpur5GT2 is more likely to be a typical A5GT. In 

order to clarify the expression pattern of Cpur5GTs, we compared the transcription of 

Cpur5GT1 and Cpur5GT2 in different tissues. The results showed that Cpur5GT1 was 

expressed in large amounts in leaves and young petals, but very low in full-opened petals. 

However, the expression of Cpur5GT2 was highest in full-opened petals, followed by 

leaves, and its expression trend was consistent with the accumulation level of anthocyanins 

in various tissues. Previous studies have also shown that the expression of A5GT is related 

to the accumulation of anthocyanins in plant tissues. In summary, we further infer that 

Cpur5GT2 encodes a typical A5GT. Therefore, the recombinant prokaryotic expression 

vector pET16b-Cpur5GT2 was constructed and the enzyme activity was detected in vitro. 

By adjusting the induction time, IPTG concentration and induction temperature, the optimal 

induction conditions for the recombinant protein were determined, 50 μM of IPTG, 

28 ℃,16 h. A large amount of induction and purification were carried out under the above 

conditions, and then the obtained protein was subjected to enzyme assay. Taking six kinds 

of 3-glucoside type anthocyanin as the substrates and UDP-glucose as the sugar donor, the 

catalytic reaction was carried out, and the reaction products were detected by HPLC. The 
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results demonstrate that Cpur5GT2 could catalyze glycosylation of all substrates at 5-O-

position, and showed the highest relative activity to Mv3G, which may be because 

Mv3,5dG is the main pigment in C. purpurascens. However, UDP-galactose cannot be 

used as a glycosyl donor for the glycosylation catalyzed by Cpur5GT2. These results laid 

the foundation for further research on the molecular mechanism of glycosylation 

modification at the end of the cyclamen anthocyanin metabolic pathway. 
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Chapter 4 Conclusions 

In this study, F3’H and A5GT involved in cyclamen anthocyanin synthesis have been 

characterized for the first time. This genetic information paved the way for 

comprehensively revealing the molecular mechanism of cyclamen anthocyanin synthesis 

and also provided a theoretical reference for breeding novel cyclamen varieties by genetic 

engineering in the future. The following conclusions can be drawn from the results of the 

experiment studies: 

1. Three full-length ORFs (STRF3’H1, STRF3’H2a, STRF3’H2b) of F3’Hs of 

cyclamen were obtained by homologous cloning and RACE method, and the base sequence 

similarity of STRF3’H2a and STRF3’ H2b reached 99.4%.  

(1) By comparing their DNA sequences with cDNA sequences, it was found that 

STRF3’H1 contained one intron, STRF3’H2a and STRF3’H2b each contained two introns. 

The deduced amino acid sequences of these candidate genes were compared with F3’H 

amino acid sequences from other plants, and they presented the same active sites and 

conserved domains. However, the prediction of transmembrane structure showed that 

STRF3’H2a and STRF3’H2b each had a transmembrane region, F3’H1 did not. 

(2) The results of real-time PCR showed that the expression trends of the three 

candidate STRF3’H genes during flower opening were consistent, all of them had the 

highest expression level at the early stage of flower opening (non-staining stage), then 

gradually declined, and the lowest expression level at the full-opened stage. In addition, the 

expression of STRF3’Hs was detected in leaves, and the expression level was higher than 

that at the full-opened. These indicated that STRF3’Hs are related to the formation and 

accumulation of anthocyanin precursors, and plays a role in the secondary metabolic 

pathways other than anthocyanins. 
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(3) According to the real-time PCR analysis, F3’Hs were expressed stronger in STR 

and weaker in C. persicum. On the contrary, F3’5’H expressed stronger in C. persicum than 

in STR. We compared the genomic structure of the F3’H genes and of F3’5’H gene 

between STR and C. persicum, but found no difference. It suggested that the differences in 

expression of these two genes in STR and C. persicum may not be caused by mutations in 

the genes themselves. Therefore, whether the gene expression level is decreased due to 

mutations of the related transcription factors requires further investigate. 

(4) In order to study the functions of the three candidate genes, we chose pET21a as 

prokaryotic expression vector, constructed recombinant plasmids, determined the 

conditions of protein induction, and successfully induced the expression of the 

corresponding protein in E. coli BL21(DE3). SDS-PAGE detection revealed that the 

induced pET21a-STRF3’H1 recombinant protein mainly exists in the form of inclusion 

bodies. The induced pET21a-STRF3’H2a and pET21a-STRF3’H2b recombinant proteins 

exist in the form of soluble protein. These have laid a foundation for future research on the 

substrate specificity of F3’H and revealing the role of F3’H in anthocyanin biosynthesis. 

 

2. A5GT is one of the key enzymes responsible for the modification of anthocyanins, 

and it is responsible for catalyzing the glycosylation reaction at the 5-O-position of 

anthocyanins. In this study, we used the wild fragment cyclamen, C. purpurascens as the 

material, and obtained two full-length ORF of A5GT, Cpur5GT1 and Cpur5GT2.  

(1) Bioinformatics analysis of the amino acid sequences encoded by the two genes 

revealed that both of them shared the PSPG conservative domain specific to UDPG. 

However, the constructed phylogenetic tree showed that Cpur5GT2 clustered with other 

known functions of A5GT, while Cpur5GT1 clustered with 3GT of other plants. 
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(2) Cpur5GT1 and Cpur5GT2 were almost not expressed in the immature anthers of C. 

purpurascens, but expressed in other tested tissues, and the expression levels were 

significantly different. The expression pattern of Cpur5GT2 was more consistent with that 

functional A5Gs from other plants. They were all developmentally regulated and have tissue 

specificity and are related to the biosynthesis of anthocyanins. Besides, we also detected 

expression of Cpur5GTs in the leaves, possibly because they were involved in the 

glycosylation of other secondary metabolites in the leaves. Considering the analysis of the 

deduced amino acid sequence, phylogenetic relationship and expression patterns, 

Cpur5GT2 is more likely to encode a typical A5GT. 

(3) To analyze the function of Cpur5GT2 in vitro, we constructed the expression vector 

pET16b-Cpur5GT2 and determined the optimal induction conditions for protein induction. 

When UDP-glucose was used as the sugar donor, the recombinant protein pET16b-

Cpur5GT2 could respectively catalyze the glycosylation of six 3-O-glucoside type 

anthocyanins to generate their corresponding 3,5-diglucoside anthocyanins. And the 

recombinant protein showed the strongest catalytic ability to Mv3G, which is speculated to 

be related to the fact that Mv3,5dG is the main pigment in C. purpurascens. But when UDP-

galactose was used as the sugar donor, the glycosylation reaction cannot proceed. 
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Outlook 

This time, three candidate STRF3’H genes were isolated, but whether they all encoding 

the functional F3’H needs to be verified. The expression of F3’H, F3’5’H in ‘Strauss’ and 

C. persicum differed significantly, this study conjectured that it may be due to the mutation 

of the related transcription factors, and this speculation still needs further analysis and 

confirmation. STRF3’Hs were weakly expressed in C. persicum but strongly expressed in 

‘Strauss’. We inferred that F3’H is associated with ‘Strauss’ flower color mutation, but the 

mechanism that affects flower color formation needs to be explored in depth. Furthermore, 

flower color formation is a complex system, involving many enzymes and genes, which 

restrict and interact with each other. Next, the differences of other genes involved in 

anthocyanin biosynthesis between ‘Strauss’ and C. persicum should be analyzed in detail 

to systematically clarify the reasons for red cyclamen flower color mutation.  

The present study demonstrated that the recombinant Cpur5GT2 could catalyze 5-O-

glycosylation of 3-glucoside type anthocyanins in vitro. In the future, in vivo 

characterization of Cpur5GT2 should be performed to reveal the role of Cpur5GT2 in 

anthocyanin biosynthesis in plants. For example, Virus Induced Gene Silencing (VIGS) 

technology can be used to specifically silence the Cpur5GT2 gene in C. purpurascens, and 

then the flower phenotype can be detected and analyzed to clarify the function of this gene. 

In addition, it has been shown that in many plant species, the UGTs involved in flavonoid 

biosynthesis are usually encoded by a multigene family, so whether there are other 

functional A5GTs in C. purpurascens is also a topic for us in the future.  

As genes involved in anthocyanin biosynthesis of cyclamen continued to be cloned and 

characterized, our understanding of the molecular mechanism of flower color formation 

will become more thorough. And these genes will also be served as the useful tools for the 
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targeted regulation of gene expression and the targeted modification of cyclamen flower 

color by molecular biotechnology. 
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