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論文概要 

多視点センサーやデータストレージ技術の発展に伴い、取得されたデータの次元

や複雑度が増している。これらのデータを伝統的な方法で処理すると、コンピュー

ターへの負担が増え、データ処理の効率も悪くなる。これらのデータをいかに効率

的に処理するかは重要な研究である。テンソルは、行列とベクトルを一般化したも

ので、データの高次の関係や内容を自然に表現することができる。近年、テンソル

法は高次元データを処理するための強力なツールとなっている。テンソル法は、信

号処理、機械学習、データマイニングなど多くの研究分野で応用されている。 

テンソル法の中で、テンソル分解算法は最も重要で基本的な方法の一つであり、テ

ンソルを低次元潜在因子のセットに分解することである。潜在因子は、データの潜在

的な特徴を明らかにし、圧縮性の高い方法でデータを表現する強力なものである。

CANDECOMP/PARAFAC(CP)分解とタッカー分解は、1 世紀以上にわたって研究さ

れてきた最も有用なテンソル分解モデルである。近年、テンソルトレイン(TT)分解が

提案された。TT分解は、CP分解やタッカー分解と比べて、計算の利便性が高い。 

今、テンソル分解算法を用いて画像処理への応用を中心に研究している。主な貢献

は、テンソル分解に基づいてデータ処理の効率と性能が高い様々なアルゴリズムを提

案した。まず、データ復元の問題に着目し、データ復元に TT とトータルバリエーシ

ョン(TV)制約を課すことによって、よい性能を発揮することができる。TT-TVモデル

を解くため、新たなアプローチを提案した。提案手法は、TTランクに核ノルム正則化

を導入した。テンソルコアへの初期化・更新の必要はない。 次に、ブラックボックス

攻撃に関する研究を行なった。機械学習(ML)モデルが日常生活でますます重要な役割

を果たしているので、ブラックボックス攻撃をもう一つの研究対象として選んだ。提

案手法は、原画像をテンソル特異値分解（t-SVD）で分解し、ノイズテンソルを特異

値テンソルに加算または減算する。Google Cloud Vision APIを含むいくつかのニュ

ーラルネットワークに攻撃を与えて、提案手法の有効性と効率性を実証した。本論文

の研究は、テンソル分解法への研究とその応用を充実させ、テンソル法に貢献してお

り、研究や産業の分野に良い参考となっている。 
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With the development of multi-view sensors and data storage technology, the dimension

and complexity of the acquired data is getting higher. Processing these data by traditional

methods will not only increase the burden on the computer, but also reduce the efficiency of

data processing.How to efficiently process these data is a vital problem to be solved. Tensor is

the generalization of matrix and vector, which can naturally represent high-order relations and

objects of the data. In recent years, tensor methods have become powerful tools to process

high-dimensional data. Numerous applications of tensor methods have been applied in signal

processing, machine learning, data mining,etc.

Among the tensor methods, tensor decomposition is one of the most important and funda-

mental tools, which is to decompose a tensor into a set of latent factors of low dimensionality.

The latent factors are powerful to reveal the latent feature of the data and represent the data

in a highly compressive way. CANDECOMP/PARAFAC decomposition (CPD) and Tucker

decomposition (TKD) are the most classical tensor decomposition models which have been

studied for over a century. In recent years, TT decomposition has been proposed. Compared

with traditional CP decomposition and Tucker decomposition, TT decomposition has good

calculation convenience.

The research is focusing on tensor decomposition algorithms and application to image

processing. The the main contribution is to propose various algorithms to increase the

efficiency and performance of data processing via tensor method. Firstly, aiming at the

problem of data recovery, imposing tensor train (TT) and total variation (TV) constraint on

data completion can produce impressive performance, we propose a new approach to solve

TT-TV model. The nuclear norm regularization on TT-ranks is introduced in our method

and our solution does not need to initialize and update tensor cores. Secondly, we choose

black-box attack as another research object as machine learning(ML) models are playing

an increasingly important role in daily life. The method decompose the original image by

Tensor Singular Value decomposition(t-SVD), the noise tensor is either add or subtract it to

the Singular value tensor. We demonstrate the efficacy and efficiency of the proposed method

by fooling some widely used neural networks including Google Cloud Vision API. The work

in the thesis has enriched the theoretical study and applications of tensor, which contribute to

the tensor methodology and will be a good reference in the research and industry fields.
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Chapter 1

Introduction

1.1 Background

Both matrices and vectors can be considered as tensors. Vectors are one-dimensional tensors,

matrices are tensors with 2 dimensions. When the number of dimension is more than 3, we

call it the high-dimensional tensor. Color images, videos, and the multi-channel electroen-

cephalogram are tensors. Grey image is a 2-dimensional data(height × width), colourful

image is a 3-dimensional data(height × width× RGB channel), video is a 4-dimensional

data(height × width × RGB channel × time) and electroencephalography (EEG) signals is a

3-dimensional data(magnitude × trails × time). How to process these high-dimensional data

becomes a vital problem for us. The traditional methods usually transform tensor to matrices

or vectors, but it will lead to spatial redundancy and less efficient factorization.

Tensor can keep the original high-order data form, and it can maintain more spatial

information in data processing [1]. With the rapid development of computer communication

and network technology, it is necessary to store, process, and analyze the data with a larger

scale, higher-dimensional, and more complex structure. Among the various tensor methods,

tensor decomposition is the most important tools of them. The purpose of tensor decomposition

is to find the latent factors of the data (i.e. the generalization of multi-dimensional arrays),

to represent a high-dimensional data by a series of low-dimensional data. The decomposed

factors can also be considered as latent features of the original data. There are some types of

tensor decomposition and they have different specific form and operations among latent low-

dimensional tensors. Some of these decomposition models are widely applied in different fields

such as machine learning [2–4] and signal processing [5,6]. Tucker decomposition (TKD) and

CANDECOMP/PARAFAC decomposition (CPD) are classical tensor decomposition models,

which have been studied for nearly half a century [1, 7, 8]. In recent years, Tensor Train(TT)

decomposition has been proposed. Compared to traditional CP decomposition and Tucker
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decomposition, TT decomposition has good calculation convenience, and it scales linearly to

the tensor order.

The thesis is studying on image processing by tensor method. With the development

of internet and sensor technology, many industries enjoys the convenience of high-quality

of images and videos. For example internet shopping, urban traffic management, social

networks, and intelligent production. Our purpose is to process these high-quality and high-

dimensional data efficiently. Chapter 1 firstly introduces the contributions of this thesis. Then

the background of tensor, some basic tensor decomposition models and the tensor completion

method we utilized in our research. In Chapter 2, We will introduce these methods in detail

which is applied in our research, including tensor train decomposition model, tensor train(TT)

rank, tensor singular value decomposition, and some representation of tensor calculation. in

Chapter 3, we present a new method to minimize TT rank with a total variation model, and

visual data tensorization (VDT) is introduced in this paper to reshape the magnetic resonance

imaging(MRI) data to enhance the performance of the proposed algorithm. In Chapter 4,

we propose a simple and effective black-box attack method. The original image is divided

into two orthogonal tensors and one rectangular diagonal tensor by Tensor Singular Value

decomposition(t-SVD). Chapter 5 provides the overall conclusion of the thesis and our future

work.

1.2 Summary of contributions

1.2.1 TT rank with TV for MRI data reconstruction

As a common medical diagnostic method, magnetic resonance imaging (MRI) is wildly

applied to hospitals for patients. MRI utilizes magnetic resonance to obtain electromagnetic

signals, thus forming the images of body’s physiological process, and it is applicable to almost

all kinds of diseases, including tumor, inflammation, and trauma. However, the drawback of

applying MRI diagnosis is the long the scanning time, and the whole progress may last from

more than ten minutes to even an hour. Therefore, patients have to stay completely still during

the scan process, which is difficult to diagnose some patients who do not cooperate such as

children or babies. If the whole process can be finished in a shorter time, the latency time for

patients will be reduce, thereby improving the efficiency of hospitals. So it is necessary to

propose a method to reconstruct MRI images in a shorter time [9, 10].

Data completion methods have been applied in MRI to decrease data acquisition time

and remove the artifacts in the image. We can reconstruct the unsampled MRI data by
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observing the sampled experimental data through some mathematical tools such as parametric

modeling and phase constraint [11]. By analyzing the relationship of acquired data through this

method, the unknown data can be predicted and sampling time can be reduced as well. Phase

constrained completion is a common data reconstruction method. Firstly, it transforms the data

by Fourier transform and then reconstructs the data by Fourier symmetry of phase information.

LORAKS [12] proposed a phase constraint based on single-channel MRI data completion and

analyze the relationship between phase constraints in partial Fourier reconstruction by data

reconstruction. These methods are based on the matrix structure. It is proved that the tensor is

an attractive and promising tool for the representation and processing of MRI data [5]. In our

method, we process MRI data by applying the tensor method which can capture more inner

structure information.

In research, the model by imposing the low-rank minimization has been proved to be

effective for magnetic resonance imaging (MRI) completion. Recent studies have also shown

that imposing tensor train (TT) and total variation (TV) constraint on tensor completion

can produce impressive performance, the lower TT-rank minimization constraint can be

represented as the guarantee for global constraint, while the total variation as the guarantee

for regional constraint. In our solution, a new approach is utilized to solve TT-TV model. In

contrast with imposing the alternating linear scheme, nuclear norm regularization on TT-ranks

is introduced in our method as it is an effective surrogate for rank optimization and our solution

does not need to initialize and update tensor cores. By applying alternating direction method

of multipliers (ADMM), the optimization model is disassembled into some sub-problems,

singular value thresholding can be used as the solution to the first sub-problem and soft

thresholding can be used as the solution to the second sub-problem. The new optimization

algorithm ensures the effectiveness of data recovery. In addition, a new method is introduced

to reshape the MRI data to a higher-dimensional tensor, so as to enhance the performance of

data completion. Furthermore, the method is compared with some other methods including

tensor reconstruction methods and a matrix reconstruction method. It is concluded that the

proposed method has a better recovery accuracy than others in MRI data according to the

experiment results.

1.2.2 Black-box adversarial attack by T-svd

Machine learning(ML) plays an essential role in our daily life and ML classifiers are used

in many fields to do the work of classification. For instance, a credit card fraud detector is a

classifier taking the user’s credit card transactions as inputs and identify which transactions
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are performed by the user and which are not. However, the safety of the model becomes an

important topic for consideration. Adversarial attacks is to add a small perturbation to the

input to misclassify the result and it is proved that the output of neural networks can be affected

by small perturbation [13] [14]. There are two kinds of adversarial attacks, the white-box

technology requires the attacker to know complete information about the target model, but

there is no such restriction on black-box technology and it modified the perturbation according

to the output of the previous query [15].

It seems that the output of most image classification models can be changed by white-

box attacks [16] and the result indicates that after learning by ML classifiers, these image

data are going to be close to decision boundaries. The white-box attack is an effective

method to attack the target model because the attacker possesses the model’s information,

including its parameter values setting and training methods, etc. The white-box attack can

be guided effectively with gradient descent [13] [17] and tend to have high query efficiency

than black-box attack(the search for successful ResNet/ImageNet attacks require on the order

of 104 − 105 queries). but in most scenarios, it is impossible to acquire the information of

the model. Hence black-box attack is more applicable for attackers [18] [19]. The number

of queries is a vital indicator of the efficiency of the attack algorithm. A low number of

queries means less money and time costs for adversarial attacks. It is necessary to propose a

query-efficient black-box attacks method.

Unlike the white-box attack, the black-box attack is practical to construct the adversarial

images. In this research, the proposed method utilizes the following simple iterative principle:

we decompose the original image by Tensor Singular Value decomposition(t-SVD), the noise

tensor is randomly picked from pre-specified set and then either add or subtract it to the

Singular value tensor which is a rectangular diagonal data and its size is same as the original

image but with much fewer value, therefore our method significantly reduces the query cost.

From the experiment result, We demonstrate the efficacy and efficiency of the proposed

method by fooling some widely used neural networks including Google Cloud Vision API.
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Chapter 2

Tensor decomposition models

2.1 Tensor preliminaries

2.1.1 Notations

Notations in [1] are adopted in this thesis. A scalar is denoted by a normal lowercase/uppercase

letter, e.g., x, X ∈ R, a vector is denoted by a boldface lowercase letter, e.g., x ∈ RI , a matrix

is denoted by a boldface capital letter, e.g., X ∈ RI×J , a tensor of order N ≥ 3 is denoted by

an Euler script letter, e.g., X ∈ RI1×I2×···×IN .

In addition, the Frobenius norm of X can be represented by ∥X ∥F =
√
⟨X ,X ⟩, and

⟨X ,X ⟩ represents inner product. The nuclear norm of X can be represented by ∥X∥∗ and

it is the sum of singular values of X. A tensor X ∈ RI1×I2×···×IN and its element can be

represented by X(i1,i2,...,iN) with index (i1, i2, . . . , iN). Moreover, we are going to introduce

two kinds of tensor unfolding methods in our paper. One is the standard mode-n unfolding

[1], which is represented as X(n) ∈ RIn×I1···In−1 In+1···IN , and another mode-n unfolding is

represented as X[n] ∈ RI1···In×In+1···IN .

2.1.2 CP decomposition and Tucker decomposition

CP decomposition. CPD decomposes a tensor into a sum of rank-one tensors. For a tensor

X ∈ RI1×I2×···×IN , it decomposes the tensor as follows:

X =
R

∑
r=1

a⃗(1)r ◦ a⃗(2)r ◦ · · · a⃗(N)
r , (2.1)

where ◦ is the out product, and A(n) = [⃗a(n)1 , a⃗(n)2 , . . . , a⃗(n)R ] is the CP factors.

Tucker decomposition. Tucker decomposition approximates a tensor by a core tensor and
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several factor matrices as follow:

X = G ×1 A(1) ×2 A(2) × · · · ×n A(n), (2.2)

where G is the core tensor, and [A] are the factor matrices.

2.1.3 Tensor train decomposition

Tensor train decomposition (TTD) is to decompose a tensor into a sequence of two matrices

and N − 2 order-three core tensors (factor tensors): G(1),G(2), · · · , G(N). The relation

between the approximated tensor X ∈ RI1×I2×···×IN and core tensors can be expressed as

follow:

X =≪ G(1),G(2), · · · , G(N) ≫, (2.3)

where for n = 1, · · · , N, G(n) ∈ RRn−1×In×Rn , R0 = RN = 1, and the notation ≪ · ≫

is the operation to transform the core tensors to the approximated tensor. G(1) ∈ RI1×R1

and G(N) ∈ RRN−1×IN are two matrices in the first and the last positions. The sequence

R0, R1, · · · , RN is named TT-rank which limits the size of every core tensor. Furthermore,

the (i1, i2, · · · , iN)th element of tensor X can be represented by the multiple product of the

corresponding mode-2 slices of the core tensors as:

xi1i2···iN =
N

∏
n=1

G(n)
in

, (2.4)

where g(1)
i1

, G(1)
i1

, · · · , g(N)
iN

is the sequence of slices from each core tensor. For n =

1, 2, · · · , N, G(n)
in

∈ RRn−1×Rn is the mode-2 slice extracted from G(n) according to each

mode of the element index of xi1i2···iN . g(1)
i1

∈ RR1 and g(N)
iN

∈ RRN−1 are extracted from first

core tensor and last core tensor, they are considered as two order-one matrices for overall

expression convenience.

2.1.4 Tensor Singular value decomposition

For a 3-dimensional tensor, in order to keep its adjacent structure information for data, we

introduce the tensor method to process the image data [20] [21]. Tensor methods have been

applied more and more widely in the field of image processing. In the paper, the t-product ∗ is

introduced to tensor calculation. The t-product of A ∈ Rn1×n2×n3 , and B ∈ Rn2×n4×n3 is a

tensor C ∈ Rn1×n4×n3 is given by:
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C = A ∗ B = Fold(Circ(A)× Vec(B)), (2.5)

where Fold() is an operation that takes Vec(B) into tensor B and it can be described as:

Vec(B) =


B(1)

B(2)

· · ·

B(n3)

 (2.6)

and Circ() is described as:

Circ(A) =


A(1) A(n3) · · · A(n3−1) A(2)

A(2) A(1) A(n3) · · · A(3)

...
. . . . . . . . .

...

A(n3) A(n3−1) · · · A(2) A(1)

 (2.7)
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Chapter 3

TT rank with TV for MRI data

reconstruction

3.1 Preliminaries

3.1.1 Proposed method introduction

In this research, we present a new method to minimize tensor train(TT) rank with total variation

model. TT rank is a well-known tensor rank, and it constitutes of ranks of matrices formed by a

well-balanced matricization method to reshapes the tensor to matrix along with each mode. TT

rank appears in physical experiments [22], and it is applied to quantum dynamics simulation

experiments [23, 24]. Low TT rank can also be applied to the compression of big data by

singular value decomposition [25, 26]. The alternating least squares (ALS) is a satisfactory

solution to tensor completion [27, 28]. The low TT rank tensor is applied in implementing

the steepest descent iteration to solve large-scale least squares problems [29, 30]. Bengua

et al. [31] proposed an approach to tensor completion by minimizing a nuclear norm on TT

rank. Previous studies reveal that the method by imposing TT rank has good performance

in processing tensor data. Total variation (TV) [32] is a guaranteed norm regularization to

encourage piece-wise smoothness, and has been used to solve many visual data problems. A

tensor completion model combined with Tucker rank and TV is proposed in [33, 34], and the

result shows its performance in visual data completion and also analyzes the expansion under

noisy observation. A low-rank smooth PARAFAC decomposition method that considers TV

and quadratic variation (QV) is proposed in [35]. Another completion model, which combined

TT rank with TV is proposed in [36] by assuming tensor train structures in the underlying

regression model. This model is rephrased as a regression task and uses the alternating

linear scheme to update tensor train cores, but the result also shows that ADMM-TV method

performs better than this method in RSE and PSNR scores.
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In our method, we introduce nuclear norm regularization on TT rank which is the most

effective surrogate for rank optimization for the global data structure. Meanwhile, we choose

anisotropic TV as another regularization term, as anisotropic TV performs well in our model

according to experimental results. VDT is introduced in this paper to reshape the MRI data

to enhance the performance of the proposed algorithm. Based on the proposed optimization

method, we divide the optimization problem into a series of sub-problems and then solve each

problem. The results show that our method takes advantages in relative standard error (RSE),

peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM). It also concludes

that our method achieves better accuracy compared with other methods based on the low-rank

constraint.

3.1.2 Previous work about total variation and tensor completion

The formulation of total variation [37] can be denoted by:

∥X∥TV−A = ∥∇hX∥1 + ∥∇vX∥1, (3.1)

where ∥X∥TV−A is the representation of anisotropic total variation, ∇hX is the horizontal

difference operator and ∇vX is the vertical difference operator, and they can be written as:

∇hX = vec(Xh),∇vX = vec(Xv), (3.2)

where Xv = X(i1+1,i2) − X(i1,i2), Xh = X(i1,i2+1) − X(i1,i2). The tensor completion is basically

evolved from the matrix completing. The goal is to complete its lost parts from partially

known entries of an incomplete matrix X ∈ Rm×n. We can apply the matrix-rank optimization

model to solve this problem:

min
X

Rank(X) s.t. PΩ(X) = PΩ(T), (3.3)

where T is observed data, and Ω is the subaggregate of partially known entries and PΩ(T)

represents the observed entries. The matrix X with missing data can be recovered by assuming

that the matrix has the low-rank structure. For example, the vector (λ1, λ2, . . . , λmin(m,n)) of

the singular values λi is as sparse as possible. The completion accuracy of X can be influenced

by the sparsity of (λ1, λ2, . . . , λmin(m,n)), because of its nature of the function, moreover,

function (3) is an NP-hard problem. It is proved that matrix nuclear norm is an effective

convex surrogate to solve rank minimization function, and the matrix completion can also be



3.1. Preliminaries 11

reformulated as:

min
X

∥X∥∗ s.t. PΩ(X) = PΩ(T). (3.4)

In addition, the total variation is a classical model for image restoration, it is a guarantee for

regional data structure, which is the important information for image completion. So a new

model based on low rank and the total variation is proposed [38], and its formulation is:

min
X

(1 − φ) ∥X∥∗ + φ ∥X∥LTV s.t. PΩ(X) = PΩ(T), (3.5)

where φ is a trade-off parameter, and its value is between 0 and 1, then we choose anisotropic

TV as optimization norm, the optimization can be written as:

∥X∥LTV = ∑i1,i2
(Xv(i1, i2)2 + Xh(i1, i2)2). (3.6)

Alternating direction method of multipliers (ADMM) [39] is introduced to solve the problem

(5). In fact, in some practical experiments, the processed data is larger than 3 dimensions.

Therefore it is necessary to reshape the data from high order tensor to the matrix. However, at

the same time, it will lead to performance loss, because some high-order space information is

lost during the data conversion.

Tensor completion is similar to matrix completion. Recover a tensor X ∈ RI1×I2×···×IN

from its known data with a subset Ω can be written as:

min
X

Rank(X ) s.t. PΩ(X ) = PΩ(T ), (3.7)

Rank(X ) represents the rank of X . PΩ(X ) = PΩ(T ) means X(i1,··· ,iN) = T(i1,··· ,iN) and

(i1, · · · , iN) ∈ Ω. CP ranks and Tucker ranks can also be applied to this optimization

model [40]. Tucker rank minimization model can be written as :

min
X(n)

∑N
n=1 αn Rank(X(n)) s.t. PΩ(X ) = PΩ(T ), (3.8)

where αn are the elements with ∑N
n=1 αn = 1. It can be reformulate as:

min
X(n)

∑N
n=1 αn ∥X(n)∥∗ s.t. PΩ(X ) = PΩ(T ), (3.9)
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X(n) is denoted as the mode-n unfolding matrix of tensor X . The high accuracy low-rank tensor

completion (HaLRTC) is applied to solve model (9) by adding an equation constraint [40].

There is another method for LRTC problem (8), which is based on TT rank optimization

[31]. It can be written as:

min
X[n]

αn ∑N−1
n=1 Rank∥X[n]∥∗ s.t. PΩ(X ) = PΩ(T ), (3.10)

where αn represents the parameter of matrix X[n], which denoted as the mode-n unfolding

matrix X, and its condition is ∑N−1
n=1 αn = 1. The TT rank obtains the relationship between n

modes and the other modes. Hence (Rank(X[1]), Rank(X[2]), · · · , Rank(X[N])) guarantees

a satisfactory way to obtain the global structure of the data. However, it is difficult to find a

solution to the problem (10). At last, the problem is based on TT nuclear norm, and it can be

written as:

min
X ∑N−1

n=1 αn ∥X[n]∥∗ s.t. PΩ(X ) = PΩ(T ). (3.11)

3.1.3 Simple low rank tensor completion combined with TT rank

To address the problem (11) it can be converted to the following problem:

min
X ,Mn

∑N−1
n=1 αn ∥Mn∥∗ + βn/2 ∥X[n] − Mn∥2

F

s.t. PΩ(X ) = PΩ(T ),
(3.12)

where βk are a series of positive parameters, and problem (12) is applied on block coordinate

descent (BCD) which is a generalization of coordinate descent. The method decomposes the

variables into two groups. The first one involves the unfolding matrices M1, M2, . . . , M(N−1)

and the other variable is X , The Mn can be obtained by solving the following optimization

problem:

min
Mn

αn ∥Mn∥∗ + βn/2 ∥X[n] − Mn∥2
F

s.t. PΩ(X ) = PΩ(T ),
(3.13)

the X[n] is fixed and the optimal solution for (13) has another expression [41], it can be

represented as:

Mn = Dγn(X[n]), (3.14)
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where Dγn = αn
βn

and Dγn(X[n]) represents the thresholding SVD of X[n]. In addition, if the

SVD of X[n] = UλVT , it can be written as:

Dγn(X[n]) = UλγnVT, (3.15)

where λγn = diag(max(λl − γn, 0)). When the Mn is obtained, the tensor X can be

computed by another equation, which can be written as:

Xi1,...,iN =


(

∑N
n=1 βn f old(Mn)

∑N
n=1 βn

)i1,...,iN , (i1, . . . , iN) /∈ Ω;

ti1,...,iN , (i1, . . . , iN) ∈ Ω.

(3.16)

This algorithm can be named as simple low-rank tensor completion based on tensor train

(SiLRTC-TT) [40]. The convergence condition will be satisfied when the difference value

between two consecutive recovered data is small than a given value.

3.2 Proposed method

In the third part, we are going to introduce the model, which combines TT rank and total

variation, and it can be denoted as:

min
X

αTk(x) + φTV(x) s.t. PΩ(X ) = PΩ(T ), (3.17)

where φ is the parameter, and k(x) = [k1, k2, . . . , kN ] is the TT ranks. α(x) = [α1, α2, . . . , αN ]

is denoted as the TT rank which condition is ∑N
n=1 αn = 1, anisotropic TV is chosen as TV

norm. T is the observed tensor, and Ω is the subaggregate of partially known data in T .

The equation PΩ(X ) = PΩ(T ) represents Xi1,...,iN = Ti1,...,iN when i1, . . . , iN ∈ Ω. The TT

ranks k(x) = [k1, k2, . . . , kN ] are nonconvex in the objective function, and matrix nuclear

norms are applied to the optimization model as the convex surrogates, and the new convex

model can be written as:

min
X ∑N−1

n=1 αn ∥X[n]∥∗ + φ ∥D(X )∥p

s.t. PΩ(X ) = PΩ(T ),
(3.18)

where X[n] an be obtained by matricization of X . ∥D(X )∥p is total variation based on data

X . In this method we choose anisotropic TV. We apply additional tensor variables Y and
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M which structure is similar to X to solve the optimization problem (18). Then the L is

introduced to denote the difference of the data, and the new formulation can be written as:

min
X ∑N−1

n=1 αn ∥X[n]∥∗ + φ ∥L∥p

s.t. PΩ(X ) = PΩ(T ),M = X ,Y = M, L = D(Y),
(3.19)

the problem (19) can be transformed to another form:

min
X ,Y ,M,L,Λ1,Λ2,Λ3

∑N−1
n=1 αn ∥X[n]∥∗ + φ ∥L∥TV − ⟨Λ1,M−

X⟩+ β1

2
∥M−X∥2

F − ⟨Λ2,Y −M⟩+ β2

2
∥Y −M∥2

F−

⟨Λ3, L −D(Y)⟩+ β3

2
∥L −D(Y)∥2

F

s.t. PΩ(X ) = PΩ(T ),

(3.20)

where Λ1, Λ2, Λ3 are the dual variables and β1, β2, β3 are positive parameters. We can achieve

a global optimization solution because it is a convex problem. Alternating direction method of

multiples (ADMM) is applied to solve this problem (20). By applying ADMM method, one

of the variables can be minimized along with the other variables are fixed. The (20) can be

split into some sub-problems:

The first one problem can be written as:

min
M ∑N−1

n=1 αn ∥M[n]∥∗ − ⟨Λ1,M−X⟩+

β1

2
∥M−X∥2

F − ⟨Λ2,Y −M⟩+ β2

2
∥Y −M∥2

F.
(3.21)

The problem (21) can be transformed into:

min
M ∑N−1

n=1 αn ∥M[n]∥∗+

β1 + β2

2
∥M− Λ1 + β1X + β2Y − Λ2

β1 + β2
∥2

F.
(3.22)

Letting τ = αn
β1+β2

, S = Λ1+β1X+β2Y−Λ2
β1+β2

,it can reformulated as:

min
M ∑N−1

n=1 τ ∥M[n]∥∗ +
1
2
∥M[n] − Sn∥2

F, (3.23)

the M[n] can be obtained by optimizing the (23), and problem (23) is similar to (13) that can

be solved by the same method.
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The second problem can be represented as:

min
Y

−⟨Λ2,Y −M⟩+ β2

2
∥Y −M∥2

F

−⟨Λ3, L −D(Y)⟩+ β3

2
∥L −D(Y)∥,

(3.24)

the second function with Y is different. This problem can be solved by the following equation:

(β2I + β3D∗D)Y = D(β3L − Λ3) + β3M+ Λ2, (3.25)

where D∗ is the adjoint of D. and D∗D is changed into the Fourier domain and fast calculated.

Moreover, the off-the-shelf conjugates gradient method [42] is applied to solve the equation,

and the solution of Y can be denoted as:

Y = i f f tn(
f f tn(S)

β2I + β3( f f tn(D∗D))
), (3.26)

where S = D(β3L − Λ3) + β3M+ Λ2. f f tn is fast 3D Fourier transform, and i f f tn is

fast 3D in-verse Fourier transform. Moreover, the computational cost can be decreased by

pre-computing the operator D∗D that outside the main loop. The third problem can be written

as:

min
L

φ ∥L∥TV − ⟨Λ3, L −D(Y)⟩+ β3

2
∥L −D(Y)∥2

F, (3.27)

the problem can be transformed to another form as it is the anisotropic total variation:

min
L

φ ∥L∥TV +
β3

2
∥L − (D(Y) +

Λ3

β3
)∥2

F, (3.28)

this problem can also be solved by:

L = sth(D(Y) +
Λ3

β3
,

φ

β3
), (3.29)

where sth is the soft thresholding, and it can be written as follows:

sth(x, τ) = sgn(x)max(|x|)− τ, 0). (3.30)
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The fourth problem is denoted as:

min
M

⟨Λ1,M−X⟩+ β1

2
∥M−X∥2

F s.t. PΩ(X ) = PΩ(T ). (3.31)

The problem (20) is the convex problem, and the objective function is smooth and differen-

tiable, and the tensor X is updated as:

X i1,...,iN =


(M− Λ1

β1
)i1,...,iN , (i1, . . . , iN) ∈ Ω;

ti1,...,iN , (i1, . . . , iN) /∈ Ω.
(3.32)

The last problem can be written as:

min
Λ1,Λ2,Λ3

−⟨Λ1,M−X⟩+ β1

2
∥M−X∥2

F − ⟨Λ2,Y −M⟩

+
β2

2
∥Y −M∥2

F − ⟨Λ3, L −D(Y)⟩+ β3

2
∥L −D(Y)∥2

F

s.t. PΩ(X ) = PΩ(T ).

(3.33)

On the basis of ADMM, Λ1, Λ2 and Λ3 can be solved through following equation:

Λ1 = Λ1 − β1(M−X )

Λ2 = Λ2 − β2(Y −M)

Λ3 = Λ3 − β3(L− γ(X )),

(3.34)

and the parameter β = [β1, β2, β3] is solved by the below equation:

βt =


η1β(t−1), i f ζ(t) > η2ζ(t−1)

β(t−1), otherwise,
(3.35)

where ζ(t) = [∥(M)− (X )∥, ∥(Y)− (M)∥, ∥L −D(Y)∥]T in t-th iteration, η1 and η2

are scale parameters. The missing ratio of data determines the value of η. The convergence

condition will be satisfied, when the relative error between two consecutive recovered data

is small than the given value, it can be denoted as (∥X (n)∥F − ∥X (n−1)∥F)/∥X (n)∥F ≤ ε,

X (n) is the completed tensor in t − th iteration and ε is a given value. This algorithm can

ensure convergence of the global optimal solution.
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TABLE 3.1: Algorithm

TT low-rank completion with total variation

Input: A tensor X , which is going to be recovered, index Ω,

vector β and ε is a small value for convergence condition and

iteration number K.

Initialization: PΩ = TΩ, β =
[

1
∥TΩ∥F

, 1
∥TΩ∥F

, 0.01
]T

, K = 300,

ε = 10−6 other variables are set by experience.

Output: recovered tensor X

1: update M by (23)

2: update Y by (26)

3: update L by (29)

4: update X by (32)

5: update Λ1, Λ2, Λ3 via (34)

6: end while

3.3 Experiment and result

3.3.1 Experimental parameter selection

Three types of performance evaluation indicators on images are introduced to estimate the

accuracy of different methods. They are relative standard error (RSE), peak signal-to-noise

ratio (PSNR), and Structural similarity index measurement (SSIM). The RSE can be de-

fined as: RSE = ∥X−X0|F
|X0|F , where X is the completed data and X0 is the original data.

The PSNR can be described as the error between two kinds data, and it can be written as

10 log10(MAX2/MSE), where MAX is the maximum value of the data. Mean squared

error (MSE) can be written as MSE = ∑m−1
i=0 ∑n−1

i=0 ∥X −X o∥2
F/mn.SSIM is an index

which value is ranging from 0 to 1 to measure the similarity between two different images. It

compares luminance and contrast [43] from the regional patterns of pixel intensities, the higher

value of SSIM represents better recovering performance. Our experiments are conducting

on a computer with an Intel Core i7, 2.2 GHz CPU, and 16GB 1600 MHz DDR3 memory.

The experiment is based on MRI images by applying the proposed method, and RSE, SSIM,

and PSNR are used to estimate its performance. We are going to compare our methods with

some others: 1. ADMM-TV [44]; 2. T-mac [45]; 3. TMac-TT method [31]; 4. SiLRTC-TT

method [31]; 5. PCLR method [46];6. TTC and TTC-TV method [36].



18 Chapter 3. TT rank with TV for MRI data reconstruction

3.3.2 MRI image with size 256 × 256 × 30

䌀漀椀氀ⴀ
䌀漀椀氀ⴀ渀

䌀漀椀氀ⴀ一

FIGURE 3.1: MRI image.

In the experiment, we applied the proposed method for MRI(Fig. 1) with size 256 × 256 × 30

which can be downloaded from Figshare database. We randomly choose the missing ratio

from 40% to 90%. Visual Data Tensorization (VDT) method [47] is applied in our experiment,

and it is proved to be effective to improve the performance of tensor train method processing.

The VDT method reshapes a matrix with size 2l × 2l to a real ket of a Hilbert space, which is

generalized from the visual data compression and entanglement method [41]. It is also can

be described as developing from the KA augmentation [31]. It reshapes the original data to

higher-dimensional data by a specific transformation with spatial structure information. The

VDT operates as follows: there is a matrix with size U × V and the data can be reshaped

to u1 × u2 · · · × ul × v1 × v2 · · · × vl, then permute the data and represents it by another

mode, which size is u1v1 × u2v2 · · · × ulvl. The new tensor has the same elements as the

original data, but the element is arranged in another way. There is a close correspondence

between u1 × v1 pixel block of the data and the first order of this reshaped tensor. Through

adopting the VDT method, the proposed method can effectively use the structural information

of data to obtain a better representation of low-rank tensor. The explanation of the VDT

method procedure is shown in Fig. 2. The MRI data is reshaped from 256 × 256 × 30 size to

a 17-order tensor, which size is 2 × 2 × · · · × 30, then reshape to a 9-order tensor by VDT

method with size 4 × 4 × · · · × 30.
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FIGURE 3.2: The left figure is the application of VDT on a matrix. The right
figure is the operation on the MRI image.

Original Image MR 90% SiLRT-TT Tmac-TT ADMM-TV PCLR Proposed

FIGURE 3.3: Figure from the first row to last row: the original MRI image
and MRI image with 90% missing data and recovered image with different
methods. The first row is based on a 6-coil image, the second and third row is

based on 15-coil and 24-coil.

Table 1 shows the different models of completion efficiency in terms of RSE and PSNR. For

the 6-coil, 15-coil, the 24-coil, and the whole coil of MRI data, the missing ratio ranges from

40% to 90% and the result indicates that our method consistently obtains better completion

results over all other methods. Compared TTC-TV with our method, although the algorithmic

complexity is reduced, the accuracy of data recovery cannot be guaranteed. Fig 3 and Fig

4 presents the performance of some well-known methods. There are two conclusions that

can be drawn from the experiment. First, the observation demonstrates that TT low-rank

completion is helpful and TT decomposition based on total variation works better than TT
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low-rank completion. Second, our proposed method produces better results than the other

algorithms. The performance of our method is superior to ADMM-TV. Since TT ranks is

well-balanced and capture the inner low-rank information efficiently. Compared our method

with the SiLRTC-TT, our method has better performance, since incorporate total variation

into SiLRTC guarantees regional piece-wise smooth structures. PCLR method applies linear

relation-ship and phase constraint to recover the missing data, and in this method, the original

MRI data is reconstructed to the matrix which size is bigger than previous data, but it loses

some structure information to recover the data. The regular low-rank completion performs well

with observed data as the prediction. As the missing ratio improves, our model performs better

than other models as the result shows that the PSNR and SSIM of SiLRTC decline faster

than the proposed method. The proposed model describes the global and relative information

of the MRI data, even with 90% missing ratio, it uses this constraint to recover the data with

satisfactory accuracy.

TABLE 3.2: RSE and PSNR of different methods on MRI data

Method
The 6-coil The 15-coil The 24-coil The whole coil
RSE PSNR RSE PSNR RSE PSNR RSE PSNR

SiLRTC-TT 0.192 17.02 0.199 16.40 0.197 15.95 0.203 16.10
TTC 0.173 19.85 0.175 18.13 0.175 18.80 0.177 19.62
Tmac 0.177 17.71 0.181 16.64 0.179 16.58 0.184 16.49
Tmac-TT 0.169 17.79 0,168 17.63 0.168 17.18 0.169 17.63
TTC-TV 0.146 22.41 0.148 22.09 0.145 22.39 0.147 22.17
ADMM-TV 0.129 23.04 0.130 22.53 0.127 23.21 0.133 22.93
PCLR 0.126 22.52 0.128 21.86 0.126 22.09 0.129 21.36
Proposed 0.117 25.32 0.121 24.15 0.120 25.08 0.122 24.15

3.4 Conclusion

In this paper, a new solution to the low-rank tensor train combining with total variation model

is proposed. The lower tensor train rank minimization is a guarantee for the global information

regularization and the total variation encourages piece-wise smoothness for regional data

constraint. By using the VDT method, we permuted the MRI images from 3-dimensional

tensor to high-higher-dimensional tensor, and then apply ADMM method to solve the proposed

low-rank model to reconstruct the MRI data. In numerical experiments, the result proves that

our method achieves a better performance than other methods.
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FIGURE 3.4: The left figure is the PSNR of different methods of the 15th coil
and the whole image on different missing ratios. The right figure is the SSIM
of different methods of the 15th coil and whole image on different missing

ratios.
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Chapter 4

Black-box adversarial attack by T-svd

4.1 Preliminaries

4.1.1 Proposed method introduction

In order to improve the query efficiency, we propose a method that changes the objective

of the adversarial perturbation attacks from the original image pixel data to another form

with a smaller amount of data. Preserve the original structure of high-dimensional tensor can

obtain more spatial information from data processing by tensor method. Tensor singular value

decomposition [48] is one of the essential tensor methods and it is utilized to decompose the

image data and it is an important tool to analyze data [49] [50], we can obtain low-rank(high

value) parts and high-rank parts of the image. Some attack methods have been confirmed that

the perturbation is roughly concentrated in the high-rank part and these attack methods can be

easily defended by low-rank assumptions [49] [51]. In the proposed method, the perturbation

is added to both the high-rank part and the low-rank part.

In this paper, we propose a simple and effective black-box attack method. Firstly, the

original image is divided into two orthogonal tensors and one rectangular diagonal tensor by

Tensor Singular Value decomposition(t-SVD). The noise tensor is added into the rectangular

diagonal tensor to construct image perturbation. In order to improve the efficiency of the pro-

posed method, we don’t have to pay too much attention to the optimal direction. Specifically,

we randomly pick the noise tensor from specified sets and then attack the data by adding or

subtracting the direction tensor into the singular value tensor. We utilize the confidence scores

to check if the result is away from the decision boundary.
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4.2 Adversarial attack

When constructing adversarial perturbation in image classification, the purpose is to change

the output of the model predictions by adding imperceptible perturbation to original images.

The perturbation should be restricted and they are imperceptible to humans. Generally, the

same images should be classified into the same label and prediction, but the same images may

have different outputs for machine learning classifiers. In this paper, we define the classifier

model as h, and the image data as X with the model correctly predicts y = h(X ), the purpose

of the adversary attack is going to find a perturbed image X ′ to change the output:

h(X ′) = X ′ subject to ∀X ′ ∈
{

δ(X ,X ′)
}
≤ ρ (4.1)

the δ(X ,X ′) is the perceptual difference between the original and perturbed images, and it can

be defined by the L0, L2 and L∞. Following [52] [53], we choose δ(X ,X ′) = ∥X −X ′∥2 as

perceptual difference. For a successful adversarial attack algorithm, the perceptual difference

should be as small as possible to the extent that the perturbed image is imperceptibly different.

4.2.1 Untargeted and targeted attack

There are two different kinds of successful attack conditions. The simple one is the untargeted

attack and it is defined as h(X ′) ̸= y, the objective of this attack is to change the output of

original prediction. Another kind attack is targeted attack and it is represented as h(X ′) = y′,

y′ is an incorrect pre-chosen prediction of the model.

Adding adversarial perturbation to original data to change the output is a discrete opti-

mization problem. Therefore it is necessary to define a surrogate loss ℓy(·) to measure the

degree between model h and output y. The problem can be described as:

min
δ

ℓy(X + δ) subject to ∥δ∥2 < ρ (4.2)

4.2.2 Attack models

There are two kinds of attack models, they are white-box attacks and black-box attacks. If

attackers are familiar with classifier model h, back-propagation can be utilized on the target
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model because the model structure and parameter settings are exposed to the attacker. Gradient

descent can be performed on the loss function ly(x′), y represents correct class.

In fact, for most real-world scenarios, attackers do not have information about the target

model, white-box attacks are restricted to be applied. For black-box attacks, the most valid

operation is to input the data to the model and get the corresponding output. The black-box

attack method is much more practical for the adversary. For example, when we choose to

attack Google Cloud Vision, it will cost time and money in each query, therefore in addition

to remaining the perturbed image is imperceptible, minimize the number of queries should

also be considered. The new optimization problem can be represented as:

min
δ

ℓy(x + δ) subject to ∥δ∥2 < ρ, queries ≤ B (4.3)

where B is the maximum of the queries we fix in the algorithm.

Theorem 1 There is a tensor A with size Rn1×n2×n3 , a tensor B with size Rn2×n4×n3 , and

a tensor C with same size with tensor B, and they satisfy the commutative law:

A ∗ (B + C) = A ∗ B +A ∗ C (4.4)

Theorem 2 If a tensor A with size Rn1×n2×n3 , then we define the AT by conjugate

transposing each of the frontal slice of A and then reversing the order of transposed frontal

slices 2 through n3.

Theorem 3 A tensor A with size Rn1×n1×n3 is orthogonal, if it satisfies:

AT ∗ A = A ∗AT = I (4.5)

where I is identity tensor with size Rn1×n1×n3 whose first frontal slice is identity matrix and

other frontal slices are zero matrix.

Theorem 4 If A is an orthogonal tensor, the L2 norm of A ∗ B can be denoted as:

⟨A ∗ B,A ∗ B⟩ = ⟨B,B⟩ (4.6)

For a color image data X ∈ Rn1×n2×n3 , the t-SVD of X can be represented as:
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X = U ∗ S ∗ VT (4.7)

where U and V are orthogonal tensors with size n1 × n1 × n3 and n2 × n2 × n3. S is the

rectangular diagonal tensor with size n1 × n2 × n3. Although tensor X and tensor S have

same size, S is a diagonal tensor and X is a tensor with full data, hence adding perturbation

on tensor X is more efficient. The perturbed image can be formulated as X ′ = U ∗ (S ′) ∗ VT,

and the equation(3) can be rewritten as:

min
δ

ℓy(X ,X ′) subject to ∥δ∥2 < ρ, queries ≤ B (4.8)

Theorem 5 For a X with size Rn1×n2×n3 , and the t-SVD of X is decomposed as X =

U ∗ S ∗ VT. The L2 norm of X can be written as:

⟨X ,X ⟩ = ⟨S ,S⟩ (4.9)

4.3 proposed method

4.3.1 Algorithm

In this section, we are going to introduce our method. There are some original images, and

we define them as X . Through a neural network classifier model h, the output of label y is

classified with predicted confidence or probability ph(y|X ). The proposed algorithm is to

add perturbation δ to change the output h(X + δ) ̸= y. Because we are blind to the model h,

the output of each query h(X + δ) is valuable and exclusive information for us.

The algorithm is proposed in this section. Firstly, we decompose the original image X by

t-SVD and the diagonal tensor S can be calculated, which is the objective to be attacked. In

our method, we represent the noise tensor as Q and step size as ϵ, and the perturbation can be

written as U ∗ αQ ∗ VT. The perturbation will be added to the original image, if the output

probabilities of image ph(y|X + δ) is decreasing, we consider the step of attack can be kept

to the data X and next attack perturbation can be written as δ + U ∗ αQ ∗ VT, otherwise we

subtract perturbation. If neither adding nor subtracting perturbation can reduce the probability
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TABLE 4.1: Algorithm

Simple Black-box adversarial attacks by t-SVD
Input: Original image X , query direction Q that
belong to vectors Q, step size. ϵ
1: X = U ∗ S ∗ VT, δ=0
2: p=py(y|X )
3: if py = maxy′py′ do
4: for α ∈ (0, ϵ) do
5: p′=ph(y|x + δ + U ∗ αQ ∗ VT)
6: if p′

y < py then
7: δ=δ+αQ
8: p = p′

9: break
10: return δ

of the result, we consider the step as an invalid attack and the perturbation will be discarded.

The noise tensor Q is randomly picked from the set W.

The candidate diagonal tensor W can be comprised of some different kinds of basis

tensor, they are the standard basis, random orthogonal diagonal basis and some specified

diagonal basis. The first choice for the attack direction is the standard basis I . Recent

work has discovered that orthogonal noise is more likely to be adversarial [54]. The random

diagonal basis attack is effective, but we found that compared with standard basis and random

orthogonal diagonal basis, adding specific orthogonal diagonal basis noise into W will increase

the efficiency of the attack and natural suitability to images [54]. In this paper, we prescribe

each direction Qi have two characteristics, the one is ⟨Q,Q⟩ = 1 and another is ⟨Qi,Q ̸=i⟩ =

0.

4.3.2 Budget considerations

Considering the sets of noise tensor W, we find that the L2 norm of perturbation ∥δ|2 can be

restricted. For each attack iteration, the noise tensor is either added or subtracted to the tensor

S . If neither adding nor subtracting can change the output probability, we discard the picked

noise tensor in this iteration. In this paper, we define α ∈ (0, ϵ) as the step size and after T

iteration, the perturbation can be represented as:

δT = δt + U ∗ αtQt ∗ VT (4.10)

the perturbation can also be rewritten as the sum of these each search directions:
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δT = U ∗
T

∑
t=1

αtQt ∗ VT (4.11)

and the L2 norm of the adversarial perturbation can be written as:

∥δT∥2
2 = ⟨U ∗

T

∑
t=1

αtQt ∗ VT,U ∗
T

∑
t=1

αtQt ∗ VT⟩

= α2
t ⟨U ∗

T

∑
t=1

Qt ∗ VT,U ∗
T

∑
t=1

Qt ∗ VT⟩
(4.12)

since t-product satisfy the Theorem 1, the right part ⟨, ⟩ can be unfolded as:

⟨U ∗
T

∑
t=1

Qt ∗ VT,U ∗
T

∑
t=1

Qt ∗ VT⟩

= ⟨U ∗ Q1 ∗ VT + U ∗ Q2 ∗ VT + . . .+

U ∗ QT ∗ VT,U ∗ Q1 ∗ VT + . . . + U ∗ QT ∗ VT⟩

(4.13)

we assume the formula U ∗ Q1 ∗ VT into a1, . . . and U ∗ QT ∗ VT into aT , for any i1, i2 ∈

[0, T], according to the matrix triple product operational rule, the equation can be transformed

into:

⟨a1, a1⟩+ ⟨a1, a2⟩+ . . . + ⟨ai1 , ai2⟩+ . . . + ⟨aT, aT⟩ (4.14)

according to theorem 5 and ⟨Qi,Q ̸=i⟩ = 0, for any i1 ̸= i2 we have:

⟨ai1 , ai2⟩ =⟨U ∗ Qi1 ∗ V
T,U ∗ Qi2 ∗ V

T⟩ = 0 (4.15)

hence the equation(15) can be rewritten as:

∥δT∥2
2 = α2

t

T

∑
t=1

⟨U ∗ Qt ∗ VT,U ∗ Qt ∗ VT⟩

= α2
t

T

∑
t=1

⟨Qt,Qt⟩ ≤ Tϵ2

(4.16)
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FIGURE 4.1: The success rate and the number of cost queries compared with
SimBA, SimBA-DCT and our proposed method by untargeted attacks. The
success rate of proposed method increases faster than SimBA and SimBA-

DCT methods.

Since U and V are constant tensors. From equation (15), we can find that ϵ is a vital

parameter to restrict the perturbation. Meanwhile, We found that if the query is restricted, we

can set ϵ higher to reduce the number of iterations, thereby obtaining a higher disturbance

L2-norm. Otherwise, if small-norm solutions are proposed, restrict ϵ will require more queries

in the same L2 norm.

4.4 experiment and results

In this section, we are going to demonstrate the efficiency of the method by fooling the

convolutional neural network (CNN) models with three types of performance evaluation: the

cost of queries(B), the L2 norm of perturbation(P), and the rate of the optimization problem

to find a feasible point(success rate). Meanwhile, we compare the proposed method with

other black-box algorithms: the QL attack [55], the SimBA and the SimBA-DCT [54]. We

use standard dataset: ImageNet [56]. Firstly, We randomly choose 1000 images from the

ImageNet and then classify them with the correct label. In the experiment, we try to minimize

the probability of the correct label in untargeted attacks and maximize the probability of the

target label in targeted attacks, we limit the maximal T = 10000.

4.4.1 untargeted attack on google Cloud Vision

For the untargeted attack, the purpose is to change the correctly labeled image into the

incorrect label. In this experiment, we test our proposed method by attacking the Google

Cloud Vision API, and Fig 1 shows its efficiency, we also compare our method with SimBA
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and SimBA-DCT. The result shows that our method ultimately achieves a relatively high

success rate and our method increases dramatically faster in success rate than SimBA and

SimBA-DCT.

4.4.2 untargeted and targeted attack on ResNet-50

TABLE 4.2: Untargeted and targeted attack on ResNet-50

Attack Method Avg queries Avg L2 norm Success rate
Untargeted Targeted Untargeted Targeted Untargeted Targeted

QL-attack 28185 20857 8.54 11.48 85.7% 98.9%
SimBA 1957 7902 4.31 9.48 98.7% 100%
SimBA-DCT 1539 8759 3.89 7.08 97.4% 96.4%
Proposed 1207 5783 4.76 8.76 96.8% 97.8%

Four attack methods are performed on ImageNet by the untargeted and targeted attack,

and we choose three different metrics to evaluate the methods: the number of cost queries

(lower is better), average L2-norm of average perturbation (lower is better), and success

rate(higher is better). The proposed method achieves close to 98% success rate slightly lower

than other methods but requires significantly fewer model queries. In this experiment, we test

the performance of our method by attacking the ResNet-50 network [57] and compare it with

QL-attack, SimBA and SimBA-DCT. Furthermore, untargeted attack and targeted attack are

performed and the number of cost queries, success rate and average L2 norm of perturbation

is utilized to evaluate the performance of our method.

Ideally, we ensure that the success rate of each algorithm attack is as high as possible. We

believe that the successful method constructs the perturbation with lower L2 norm and the

lower queries. From Table 2, we can find that our method has significantly lower queries than

other methods. In the untargeted attack experiment, QL-attack only gets 85% but costs 28000

queries. Although compared to SimBA and SimBA-DCT, we do not achieve a higher success

rate, but our method costs fewer queries. In the targeted attack experiment, the test methods

are much more comparable, but our method still requires fewer queries than other methods.

4.4.3 The qualitative comparison of different methods

In this part, we randomly selected several images to verify the qualitative results of different

methods. In this experiment, we choose SimBA and SimBA-DCT for comparison. Figure

2 shows the original images and the attacked images, as well as the L2 norm of adversarial

perturbation of each image and the number of cost queries. All methods have successfully
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FIGURE 4.2: The first row of the figure is original image, the other rows are
the result attacked by SimBA, SimBA-DCT, and the proposed method. P
means the L2 norm of adversarial perturbation and B means the cost number of
queries. Comparing SimBA and SimBA-DCT, our method cannot guarantee
the lowest L2 norm of perturbation, but the number of queries is significantly

less than the other two methods.

attacked the original image. Although our method cannot always achieve the smallest L2

norm, the number of queries consumed by our method is significantly less than other methods.

4.4.4 Evaluating different networks

In order to verify that our proposed method is also effective for other convolutional neural

networks models, we choose DenseNet-121 [58] as our objective model for the untargeted

attack. The result shows the success rate and the number of model queries with DenseNet-121

and ResNet-50 models. From Fig 3, we find that whether DenseNet-121 or ResNet-50 model

are both vulnerable to our attack method, and DenseNet-121 model is trended to be fooled

easier. From the experimental results, our method successfully attacks different CNN models

with high probability.

4.5 Conclusion

In this paper, We are the first to utilize the tensor method to construct adversarial perturbations.

A simple and effective black-box algorithm is proposed. We use tensor singular value

decomposition to process the image and add specific perturbation into the singular value tensor

to create perturbation. Our attack method is not only effective for different CNN models, but
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FIGURE 4.3: The success rate and the number of queries through ResNet-50
and DenseNet-121 models for untargeted attacks. Our method can fool both
ResNet-50 and DenseNet-121 successfully within 10000 queries with high
probability. Compared with ResNet-50 model, DenseNet is more vulnerable

against untargeted attacks.

also more efficient than other methods (our method has a higher success rate in the first 1000

queries).

4.6 APPENDIX

4.6.1 PROOF OF THEOREM 1

For tensor A with size A ∈ Rn1×n2×n3 , a tensor B with size B ∈ Rn2×n4×n3 , and a tensor C

with same size with tensor B, the t-product of A and B + C can be written as:

A ∗ B +A ∗ C

= Fold(Circ(A)× Vec(B)) + Fold(Circ(A)× Vec(C))

= Fold(Circ(A)× Vec(B) + Circ(A)× Vec(C))

(4.17)

Since the matrix standard multiplication satisfy the commutative law and it can be rewritten:

Fold(Circ(A)× (Vec(B) + Vec(C)))

= Fold(Circ(A)× (Vec(B + C)))

= A ∗ (B + C)

(4.18)
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4.6.2 PROOF OF THEOREM 4

For a tensor A and its L2 norm is described as:

⟨A,A⟩ = ∥A∥2
F = trace((A ∗AT)(:,:,1))

= trace((AT ∗ A)(:,:,1))
(4.19)

where (AT ∗ A)(:,:,1) is the frontal slice of AT ∗ A and (A ∗AT)(:,:,1) is the frontal slice of

A ∗AT. If A is an orthogonal tensor, the L2 norm of A ∗ B can be denoted as:

⟨A ∗ B,A ∗ B⟩ = trace((A ∗ B)T ∗ (A ∗ B))

= trace(B ∗ AT ∗ A ∗ B)

= ⟨B,B⟩

(4.20)

4.6.3 PROOF OF THEOREM 5

For a X with size Rn1×n2×n3 , and it can be decomposed as X = U ∗ S ∗ VT. The L2 norm

of X can be written as:

⟨X ,X ⟩ = ⟨U ∗ S ∗ VT,U ∗ S ∗ VT⟩

= trace([(U ∗ (S ∗ VT))T ∗ (U ∗ (S ∗ VT))](:,:,1))

= ⟨S ∗ VT,S ∗ VT⟩

= trace([(S ∗ VT) ∗ (S ∗ VT)T](:,:,1))

= ⟨S ,S⟩

(4.21)
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we try to improve the efficiency of algorithm in image processing. We applied

tensor method to data completion and adversarial attack technology. The contributions in the

thesis prove that keep the original data in high-dimensional form and process these data by

tensor method will increase the efficiency of data processing. The main conclusion of the

thesis are summarized as follows:

• TT-TV model for data completion (Chapter 2): In this research, we present a new

method to minimize TT rank with total variation model. In our method, we introduce

nuclear norm regularization on TT rank which is the most effective surrogate for rank

optimization for the global data structure. Meanwhile, we choose anisotropic TV as

another regularization term, as anisotropic TV performs well in our model according to

experimental results. In contrast with imposing the alternating linear scheme, nuclear

norm regularization on TT-ranks is introduced in our method as it is an effective

surrogate for rank optimization and our solution does not need to initialize and update

tensor cores. VDT is introduced in this paper to reshape the MRI data to enhance the

performance of the proposed algorithm. Based on the proposed optimization method,

we divide the optimization problem into a series of sub-problems and then solve each

problem. The results show that our method takes advantages in relative standard error

(RSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM). It

also concludes that our method achieves better accuracy compared with other methods

based on the low-rank constraint

• Black-box adversarial attack(Chapter 3): 1. In this research, we first try the tensor

method in adversarial attack technology. The attacked image is processed by tensor

singular value decomposition, and we add the noise tensor in singular value diagonal
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tensor to create perturbation instead of changing the pixel of original image with the

same size. We also impose restrictions on noise tensor to generate less L2 norm of

the image. We design a simple and fast algorithm to attack the targeted ML model by

adding perturbation to images effectively. The noise tensor is randomly picked from pre-

specified sets and then add or subtract it to the pre-acquired diagonal tensor. We show

that without adding the perturbation to the original image, our method achieves better

query efficiency compared with the state-of-the-art method. We also attack different

CNN models to demonstrate the robustness of our method.

5.2 Future work

Though we have proposed several algorithms based on tensor method in the ML field, there

are still remained problems to be explored in the future:

• We are going to combined other tensor model rank minimization such as tensor ring

rank with total variation.

• We are going to design another kind of experiments to illustrate the performance

of different methods and we try to complete another kind of data to estimate the

performance of our proposed method.

• In the experiment, we found that attacks on different positions of the singular value

tensor, the perturbation had different characteristics. In the next research, we will

conduct research on this characteristic to improve the efficiency of the algorithm.

• We are going to try to design a defense technology to improve the robust of ML model.

• As we discussed in chapter 4, ϵ is a vital parameter to balance the query and L2 norm

of perturbation. In the next research, we will try if it is possible to find the optimal

parameter.
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