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Abstract
In the presence of an asymmetry with respect to the
x- and y-directions, possible singularities in the electronic
density of states are investigated in the Cu-O 2D plane
model. The mixing of the Cu- and O- hole states leads
to an interesting behavior of the density of states, which
induces the drastic reduction of the isotope effect.

§1. Introduction

The discovery of high-Tc superconductivity in Cu-based oxide
superconductors has attracted strong interest in possible new
mechanisms for the phenomena. To account for the origin of
superconductivity in these materials, many authors have proposed
various mechanisms.’-% However, the problem may still be
controversial at the present time. '

In the YBa,Cus0,-x compounds, two dimensihnal Cu(2)-O(a, b)
layers are considered to be relevant to the conduction process.
In fact, the interlayer transfer integral is two orders of magnitude
smaller than the intralayer transfer. At low temperatures, these
layers show a certain type of asymmetry with respect to the x-
and y-directions, i.e. formation of an oblique lattice, where the
distance between neighboring Cu(2) and O(a) atoms is slightly
longer than that between Cu(2) and O(b) atoms.® In such an
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asymmetric situation, the Coulomb potential energies at O(a) and
O(b) sites would be different from each other, together with the
anisotropy of the intralayer transfer integal. When the tem-
perature exceeds a certain critical vaiue, the oblique lattice
changes into the squaré one. The high-T¢ superconductivity is
not observed in this symmetric structure. Such an experimental
evidence suggests that the structural asymmetry (bond asymmetry)
may play a significant role in realizing the high-Tc state.”

For the copper and oxgen ions in the Cut*+ and O-- states,
the hole numbers on these ions are respectively given by 1 and
0. The additional holes to such an ionic state would then go
mainly into the O-levels to avoid the strong Coulomb repulsion
at Cu-sites. Thus, the charge carriers of superconductivity are
considered mainly on the oxgen atoms. This fact enables us to
introduce the O-hole dominant model,”® where the available Cu-
states are eliminated by standard perturbation theory, and only
the O-sublattice is taken into account. In this O-hole dominant
model, the potential energy difference between the O (a) and O(b)
states induces the splitting of the O-band into two subbands.
The upper (lower) edge of the lower (upper) subband shows the
singularity described by the expression, E-*2logE, (E— 0+),
when the O-hole hopping occurs only between nearest-neighbor
O-sites. Furthermore, the extremely small but nonvanishing
interlayer transfer changes the above singularity into the two
singularities specified by (logE)? and logE with with E— 0+,
which are located very closely to each other ; the distance betwen
them is of the order of the interlayer transfer integral. As
shown in the preceding paper (I),® such a singularity-enhanced
density of tates induces an interesting chemical potential depen-
dence of the isotope effect. In particular, the isotope effect is
drastically reduced when the chemical potential comes close to
these singularities. '

The O-hole dominant model described above is valid for the
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large limit of the Coulomb repulsion at Cu-sites.. In the com-
pounds we are considering, the Coulomb repulsions at Cu- and
O-sites are respectively estimated to be Us=5-8eV and Uo=2-3eV,
and the Coulomb repulsion V. between neighboring Cu- and O-
holes is V<leV.. Such an estimate suggests that the contribution
of the Cu-holes to supercurrents is not necessarily negligible.
Thus, in a more refined treatment we are required to consider
the Cu- and O-holes, simultaneously, and to investigate the mixing
of them. The purpose of this paper is to point out that the
appreciable mixing of the Cu- and O-hole states induces some-
what different types of singuiarities and different shape of the
density of states from those in the O-hole dominant model
presented in the paper I. We also aim at investigating how the
singularity-enhanced density of states in the Cu- and O-hole
mixing model affects on the isotope effect and the tunneling
currents, both of which are sensitive to the density of states.

In the Cu-O based high-T¢ superconductors, many physical
quantities experimentally observed are averaged over the x- and
y-directions. For example, the magnetic penetration depth 1 is
estimated to be 1000-1500 A, which is an average over A; and .
In order to measure 4, and 4, separately, large untwinned cr&stals
are required to be available. The in-plane anisotropy of 2 leads
to the distortion of triangle lattice of magnetic fluxes, and the
observed distortion yields the following effective mass anisotropy,
my/my=1.2-1.4%1 (2 is proportional to m'?). This. result also
suggests that the analysis of the in-plane anisotropy is necessary.
In some respect the following discussion will contribute to clarify-
ing the effect of the in-plane anisotropy, although the model
employed is a simple one.

§2. Single particle eigonstates
We cousider a single plane model described by the following
Hamiltonian,
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H=H,+Hg ‘ - @
where the one-particle and Coulom repulsion terms, H, and He,
are respectively given by

1{0=Edztedgdia+Ea2mpa;;samx+Emeb:sbna

+a/2  imys (dsama+b. €) +25/2 Dtinys (A Lbns+ b c)  (2.2)
and

Hine=Ua/281an3n?_+ Us/2 man

+ U<>/22mn’,’,snﬁ’,_s+ V‘Z(im)Eslszn,qsl”:,s,

+Vz (in)stsznfslnzsz 2.3)
In the above definitions, we have employed a hole picture to
simplify the whole discussion. Thus, the operators di, a}, and
by, create s-spin holes at Cu-, O(a)- and O(b)-sites, respectively,
and the symbol ¢ ) stands for a pair of nearest-neighbor sites.
U: and U, represent the magnitudes of the Coulomb repulsions at
Cu- and O(a, b)-sites, and V is derived from the intersite Coulomb
repulsion between neighboring Cu- and O-holes. #¥, #2 and 73,
are the hole number operators at Cu-, O(a) and O(b)-sites,
respectively. In the hole picture, we have E;<E,, E;.

We begin with considering the single--particle eigenstates of
H, given by (2.2)- Fourier-transforming H,, we have
Hy=FE;} sd I-e'.sd ket Ea ) ksa/:;ﬂks +E) kabzsbkn

+taXike COS ks (dars+h. c.) +15 Y ks cOS ky (dfbrs+h.c.)

2.9
where the x~ and y-components of 2D momentum % are confined
to the first Brillouin zone, i.e. -r/2<k,, k,<r/2. The linear
transformation

Q15 (k) d s
Q) |=U| af; (2.5)
Q5 k) b
diagonalizes H, as follows
Ho=Zz=1-sEkaE?(k)Q}§(k)Qfa(k), (EY<E}<E) 2.6)
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with keeping usual anticommutation rules, [Q;} (k), @js(k')]+=0y;
drer etc. The eigenenergies Eg-(k) are obtained from the equation
E—Ea=f2/(E—Ea)+g}/ (E—Ey) (2.72)
or equivalently
Z(E. k)= (E—Es) (E—Ea) (E—Es) — f3(E—Es) —g}(E— Ea)
=(E—E}(k)(E—E}(k)(E—E}(R)=0 (2.7b)
with fu=ta cos ks, gr=t, cos ky and E=E%(k),

The eigenstates with energies E{(k) and EJ(%) corresppond to
the extended antibonding and bonding Cu-O electronic bands,
respectively. Their amplitudes take comparatively large values at
Cu-sites, whereas the E;-holes have large amplitudes at O-sites.
When E.=E,. the E,-holes are completely localized at O-sites,
giving a delta function spike at E=E, to the density of states.
If the small transfer integral between neighboring O(a) and O(b)
sites is considered in the Hamiltonian (2.1), the delta function
spike changes into a narrow band with finite bandwidth. However,
such a change does not yield serious modification of the discussion
presented below.

The density of states D,(E) for the E;-band is given by

Du(E) = (/07 dka* ahyd (E—~ ES () 2.8)
From (2.7b) it follows that
d(E— Eo(k)) a(E— Eo(k))(E Eo(k))(E—-Eg(k))
xlim g | (E—EY(k)(E —ES(R)| '
=[0Z(E, k)/0E]e-rF;n0(Z(E, k) 2.9) -
Since Eo(k) are functions of cos? k; and cos? k,, it is convenient
for later calculations to write as E%(k)=EY(cos? ks, cos® k)= =E)
(%, ¥) with x=cos? k; and y=cos®k,. Then, combination of (2.8)
and (2.9) leads to
D(E)=r";*| E— Ea| ~, d#[x(1—5)1-*[h(x, E)

X (1=h(x, EN]-'%6 (h(x, EY0 (1—h(x, E)|3[E?
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X (4, h (%, E)]*—2(Ea+ Ea+ Es) E)(x, h(x, E)

+E4Eo+ EoEy+ EyEs—2x—2h (x, E) | (2.10)
with
h(x, E) =[(E~Ey) /t}] [E— Es—t%x/ (E— Ea)] (2.11)
and the step fuhétion '
0=l e 2.12)
0 otherwise

After somewhat lengthy calculation, we have from (2.10)
.logarithmic divergence at the two points (Fig.1)

E=[Eo+ Es— {(Ea—Ea)*+4t%1/2] /2=, (2.13a)

Fig. 1. The density of states for the E;-band, D;(E), defined by
(2.10), in the absence of the Coulomb repulsion. The solid
curves A and B correspond to the parameter values i)
to=tp=1 and ii) fp=1.1, =0.9 respectively, with E¢=0 and
Eo=E;—0.1=05. The dashed curve corresponds to the
symmetric case (fa=ts=1 and E.=E;=05, E;=0). P:
means the position of the logarithmic van Hove singularity
and Er the Fermi energy for the half-filled E;-band.
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E=[Es+Es— {(Es—Eq)*+4} 1/*]/2=E,, (2.13b)
Thisdive rgence is equivalent to the two-dimensional van Hove
singularity. For the symmetric case, i.e. E,=F; and f.=?s, the
logarithmic divergence appears only at E=E, =FE},, (the dashed
curve in Fig.1); then for the half-filled E;~band the Fermi energy
is located just at the logarithmic peak. On the other hand, when
at least one of the two relatins Ee+#E; and .+l is satisfied, two
logarithmic peaks appear at different positions (2.13a, b). In this
two-peak structure, the Fermi energy is located between the two
peaks for the half-filled E,-band. Thus, when the E,-band is
half-filled, the transition from the symmetric to asymetric state
leads to the drastic reduction of the density of states at the Fermi
energy for the E;-band.

In the following discussion, we assume that in the presence of
the additional holes, the E;-band is half-filled in the hole picture.
Roughly speaking, this state corresponds to the ionic configuration,
Cu** and O--. Then, the Coulomb repulsion terms in (2.3)
(particularly, the Us-term) yield the finite gap between the
occupied and unoccupied E;-energy levels. The unoccupied E,-
and E,-bands are also modified by the Coulomb repulsion terms.
Applying the Hartree-Fock approximation to (2.3), we have the
following expressions for the hole dispersions of jhe unoccupied
E;-levels (j=1,2,3),

E;(k)=E 3 (%) + Ej, coutomb (%) (2.14)
where E(}(k) are defined by (2.6) and Ej coulomb (k) are given by

E;, coutomb (B) = Xi1=1,2,aUt|wo; (B) |2+ 2[ Vi {|w2; (R) |2

+ |ws; (B) |2} + (Vart Vi) [wia (R) |2

— (V4 cos kx4 Vi sin kz) wyj (k) w,; (k)

— (V% cos ky+ Vi sin ky) wy; (B) ws; (k) (2.15)
with wi; (B) being the i—j components of the inverse matrix of
U defined by (2.5) and

Uy=UsXr(<kp |ws () |? (2.16a)
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Ui=Us Xr(<kp) | Wi (B) |2 (1=2,3) : (2.16b)

Vi=V Tu<rplwn(®) | (i=1,2,3) | (2.16¢)
and '

V=V Sh<tp (s c08 kot Oyi sin k) wn (Dwi () (2.172)

VI=V Yr(<kp) (011 cOS ky+ 0,1 sin ky) wsy (B) wiy (k)

(i=1,2) ' (2.17b)

Here 4 means Kronecker’s delta function. We note that for a set
of adequate parameter values, E, (k) becomes smaller than E; (k)
in a certain range of the first Brillouin zone, as illustrated in
Fig. 2. The dashed curve represents the Fermi surface for the
half-fijled E;-band, the curve deviating from the symmetric case,
ie. |ks|+|ky|=n/2. Both the hatched and dotted regions are
empty for the half-filled case. The relation, E;(k)<E.(k), is
satisfied in the hatched region, whereas we have E, (k) <E, (k) in
the dotted region. Thus, after completion of occupying the dotted
region, the rest of the additional holes will go into the E,-hand.
The dotted region becomes narrower with increasing U, and for
sufficietly large Us; the inequality E, (k) <E,(k) is satisfied in the
whole region of the first Brillouin zone. Then, all the additional
holes occupy the E;-band.

From numerical calculation, we have confirmed that the #-
dependence of E; coulomb(#) is not so strong compared with that
of E‘}(k) ; the contours of E;(k) in the k-space are very similar
to those of Eg(k). This enables us to introduce the approxima-
tion,

Ej, Coutomb (B)—<Ej, Coulomb (k) Yar=FEj.. (2.18)
where {...)sr means taking the average of E;, Coulomb(k) over the
first Brillouin zone. Such a simplification leads to the following
expression for the density of states for the E,-band

Dy(E) = (x/2) jo’ 2dk,,jz’ 2dk,5 (E—E, (k)

=n-ity*| E— Ea| [ dxlx(1—01 [0 (5, B) A~ h (x5, E)] 2
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Fig. 2. In the hatched region, the relation E,(k) <E;(k) is satisfied
in the first Brillouin zone. In the dotted region (where
Ei-levels are also unoccupied), E;(k) <E;(k). ta=ts, Ea
=E»—0.1=05 and (Us'Uy'V) is given by (a) (6, 2, 0), (b)
(6, 2,1) and (¢) (5 2, 1). The dashed curve represents
the Fermi surface for the half-filled E;-band.

X0 (h(x, ENO(1—h(x, E)|3[E: (%, h(x, E)]*—2(Ea+ Ea+ Ep)
X B (%, h (%, E)+ EoEy+ EvEa—to*x—1ts2h (%, E) | 2.19)
with E=E—E,, .. From the step functions in the above integrand,
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Fig. 3. The solid curves represent the densities of states, D, (defined
by (2.19)) and Dy_model. Here Dy_moder is the density of
states in the O-hole dominant model. The paremeter values
are the same as those employed in Fig. 2(a). The dotted
curves give the modifications of D, and Dy_mode1 due to the
small interlayer transfer {; (=10"2%).

it is verified that D, is nonzero in the range, Es+E;, .<E<E
+E;, .. From (2.19), it is verified that
D,(E)=const. X (E—Eq—FE;,¢)"'/2 E—Eq+E; +0
(2.20a)
D,(E)=const. X (Es+E:,c—FE)-1? E—Ep+E; —0
(2.20b)
We also confirm from (2.19) that a logarithmic singularity
D, (E) <log| E—Er—E;, ¢| (2.21)
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appears as another peak near the center of the subband, where
EL is determined from
Er—Eo=ta*/(Ez— Eo) +t?/ (EL—Eu) (2.22)

with E;<ErL<E;. In Fig. 3, we present the density of states,
D,(E), which shows the three sharp peaks, i.e. the two peaks
(given by (2.20a, b)) at the upper and lower band edges and the
peak near the center of the band. As is found in Fig. 3 the
shape of D,(E) is considerably different from the shape of Dy-model
(which is the density of states in the O-hole dominant model).
The solid curves represent D, and Dy—pedol in a sirgle layer model,
and the dotted curves the modifications due to the small inter-
layer transfer (refer the next section). One of the characteristic
features of Do_moder is the splitting into two subbands; for the
solid curves, the band edge peaks are specified by the E-!/2log
E-singularity with E— 0, and for the dotted curves the two peaks
in each subband are specified by the (log E)?- and log E-singu-
larities. For the Fermi energy close to theses singularities, com-
paratively high comcentration of holes (#.~0.5) is required. On
the other hand, in the Cu- and O-hole mixing model the con-
centration #. of the additional holes to realize the Fermi energy
close to the singular point is dependent on the parameter values
of UsUs'V and tats. For example, for (UsUsV)=(6,2,1) with
ta=t,=1, we have #.~0.1. When U;>8 with (Uy'V)=(2,1) and
ts=1»=1, all the unoccupied E;-levels shift to higher energy side
than the bottom of the E,-band. Then the concentration .
becomes extremely low. In Fig. 4, we present the relative
positions of the unoccupied E;- and E;-bands.

As described above, consideration of the small interlayer
transfer leads to the (log E)*- and log E-singularities (located
very closely to each other) of Dy_moder. However, the Cu— and
O-hole mixing model does not necessarily yield such singularities.
In fact, in the presence of the interlayer transfer D, does not
show any singularity, although its peak structure is almost



N

A
AE

Fig. 4. The occupied and unoccupied E;-bands (the dotted curves)
separated by a finite energy gap (which is resulted from
the Coulomb repulsion, mainly at Cu-sites). The hatched
region is odcupied by holes (half-filled). AE is the distance
measured from jhe bottom of the E,-band. For the para-
meter values employed in Fig. 2(a), we have AE=0.03.

unchanged. To see this, the next section is devoted to a study
of the effect of the small interlayer transfer.

§3. The effect of the iuterlayer transfer

In this section, we consider the interlayer hopping processes
decribed by the Hamiltonian

Hinter= Z(Lle)Z:ng 8 [tﬁ,}f,’,md Ly, mde'h ns+tL'L2 azx. ms@La, ns

aa, mn
153 BF psbLayns+E5E2 (A1), ms@Lo, nst B )
%Lmn (sz, msOLo,nstB- C) +t,z,'1;L,,2m (azh msDLy nsTh-C.)

3.1)
where L, and L. are layer indices, and <L,L,> means taking

nearest-neighbor layers. = and » aie lattice site indices. Sub-



97

stituting the following Fourier-transform into (3.1)

dr, ms=Xx exp (tkRy)dz, ks, €t al., (3.2)
with the linear momentum k& within the layer, and making use
of (2.5), we obtain

Hinter= Z<L1L2>ZaZklkztI’j:%szth is(B1) Qp,, 5 (Rs) 3.3)
where 5112, results from #g3lz , thik2 | et al, Thus, the interlayer

transfer induces various types of interband transitions. In the
following discussion, we simply put

tEike, =1.04,0k, (3.4)
where it is assumed that the 2D momentum (parallel to the
layer) of a hole is conserved in the interlayer hopping processes.

In such a simplified treatment, D,(E) can be expiessed as

D, (E) =X ks Lk, kyd (E— Bz (k) —ts cos kz) (3.5
where &, specifies the momentum in the direction perpendicular
to the layers. Putting z=cos %4;, we have

Dy(E) = (20) (/9| dz(1-2)*| E~tie—Eal
x [\ dzlx(1—011h (5, E=ti2) A—h (s, E—t:2)] "

X0 (h(x, E—t,2)0 1—h (v, E—1.2)|3[E: (%, h(x, E—t,2)]*

—2(Ea+ Eo+ Es) Es (x, h (%, E —t:2)+ EoEs+ EvEa+ EaEa

—ta2x—ts2h(x, E—1,2) | (3.6)
From the above relation, we find that D,(E) is nonzere in the
energy range, E,—t,<E<FE;+t. To investigate the behavior of
D,(E) neer the band edge, E=E—t,, we put

E=Ea'“tz+tzp; (E-=E—E2, c) (3 7)

with 0<p<<1. Then, we have

D,(E) o< (Es—Eq) —1I:11‘1’dz(1_zz) -1/2

5 u2(z, )

e PEA=D ] [~ us (3, D) (s (2, D) —2) ]2

3.8
where
(2, p) =—t:(Ea— Eq) (2+1—D) /ta® (3.9a)
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U3 (2, p) = —t: (Ea— Ea+10*/ (Es— Ea) (24+1— D) /ta® (3.10)
From (3.8), it follows that

Du(B) < (By—Ea) [ del~t,1~2) (241~ 1)1

X F(r/2,1+4 (Ea—Es) (Es— Eq) /ts%] (3.11)

with the function F defined by the elliptic function,

Fle/2, K=" dx (- sint )12 (3.12)
It is easy to confirm that F satisfies the relation,

limp-1F[n/2, k]—1/2 log (1—Fk2) (3.13)
Then, for Ey=E; or Eg=E; we have

D,(E) < (Ey—Eg) |log (Ee— Eq) (Ey— Eo)| (3.14)
Noting that

S:i“&d?‘[(z-l-l) (=1+p—2)]1"2=x (€.15)

we find from (3.11) that D,(E) takes a finite value at the limit
p— 0. Similar discussion can be applied to the upper band edge,
E=FE;+t,. Thus, we find that the E-'/2-singularity at the band
edges of the E,-band vanishes in the presence of the small inter-
layer transfer, although the peak structure is almost unchanged,
as shown by the dotted curves in Fig. 3.

§4. The influence of the singularity-enhanced density of states
on the tunneling current and the isotope effect
In this section, we first investigate how the singularity-enha_nced
density of states discussed above affects on the behavio of the
tunneling current, which can flow between the two supercon-
ductors separated by a thin dielectric barrier. Tunneling spectros-
copy is one of the powerful methods to clarify the nature of the
superconductors.
From a Hamiltonian formalism of the tunneling problem, the
tnnneling current can be expressed as
1@, V)=Ip(V) +I;(V)sin F(t) +--- 4.1)
where F(f) =cons.+2¢Vt/h with the time index ¢ and the static
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bias voltage V. I, is the quasi-particle current, 1; is the Cooper

pair’s phase coherent tunneling transition, and the dots stand for

the other tunneling components such as the quasi-particle-Cooper

pair interference component. In the following, we calculate the

V-dependences of I, and I, which in the framework of BCS
- theory are defined as'v

I (V) =h/eRy| " "dE n1(Eyns(E—E) [f (E—Eo) £ (E)]

4.2)

Ir(V) = (h/x eRN)Pt:dEg 4. pi(f}g pa( B@/)

X[f(E)—f(E")] 4.3
"{where Ey=eV/h, Ry=h*/4ze’t* with the averaged transfer integral
t, and P in (4.3) means taking the principle value. #; and :
(=L, R) are given by
n(E)=|E|D(E*—|A¢|®) ' *6 (| E | — | Ad]) 4.4
Di(E)=|A:| D(E*—| Ad|?) "*/*sgn(E)O(| E|—| As])  (4.5)
with the order parameter A; and
J(E)=[exp(E/ksT)+1]"" (4.6)
In the above formula, we note the energy E-dependence of the
density of states D. This dependence is particularly important
when the Fermi energy is located near the singular of D. In
numerical computations, we confine ourselves to the case of the
low E:-hole concentration; the Fermi energy is near the bottom
of the E;-band, and thus near the E-?/:-singularity. Then, the
low-voltage behavior of the tunneling current is dominated by
this singularity, while the contribution of the E,-band is similar
to the flat band case. In such a situation, replacement of D in
(4.2) and (4.3) qy D, is considered to be reasonable. We also
assume that the order parameter of the left and right supercon-
ductors are equal to each other, i.e. Ar=Ar=A.
The numerical results for the V-dependence of I; at T=0 are
illustrated in Fig. 5, where E,=¢V/2A4 and Z,,,: (eR¥/hyI;p. At
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1, . E
0~ 1 3 0

Fig. 5. The contiibution of D, to the quasi-particle tunneling cur-
rent, Igp’ defined by (4.2). Tqp=(eRn/2A)Ip and E,
=¢V/2A. The solid curves A and B correspond to Ep:SA
and 104, respectively, with W,=200A. The dashed curves
A’ and B’ represent the modifications of A and B due to
the ihterlayes transfer (£;=10"2f;). The parameter values
are the same as those empleyed in Fig. 3. The dotted curve
gives Igp for the flat E;-band, i.e. D,(E)=1/W..

T=0, I, vanishes for E,<1, whereas for Ey>1 j4, increases with
increasing E,. The solid curves A and B correspond to §F=5A
and 10A, respectively, where Er is the Fermi energy measured
from the bottom of the E,-band. In these calculations, we have
put W.=200A with W, being the E,-bandwidth. The dashed
curves A’ and B represent the modifications of the curves A and
B due to the small but non-vanishing interlayer transfer t, defined
by (3.4) (In Fig. 5, £,=10"%,). The dotted curve gives I, in the
flat band case, i.e. D;=1/W;. Comparison of the solid and dotted
curves indicates that the singularity at the bottom of the E,-band
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enhances significantly the quasi-particle current in the situation
we are considering. Although the interlayer tiansfer #, tends to
suppress the enhancement of I,/ through the redudtion of the
singular behavior of D, the appreciable enhancement of I, is
still observed for #, of the order 10-%/,. Comparing the solid
curves with the dotted curve, we also find that the E-'/?-singu-
larity at the bottom of the E,-band tends to surpress the value of
the derivative of I, with respect to the bias voltage V. For
example, we L/(V)/Iy/(V)=04 and Iy/(V)/I/(V)=05, where I’
and Ji’ are dl,,(V)/dV for the solid curves A and B, and I/ for
the dotted curve in Fig. 5. Such a trend is resulted from the fact
that for the position of the Fermi energy under consideration,
the unoccupied density of states, D, decreases rapidly with
incresing B (owing to the E-!'/?-dependence of D;). In Fig. 6,
we present the results for the Cooper pair’s phase coherent
current I;. The solid curves A and B correspond to Er=5A and
104, respectively, and the dotted curve represents the result for
the flat band case, i.e. D,=1/W,. Similarly to the calculation of
I,p» we have put W,=200A4. In the variation of I; with E,- one
of the characteristic features is the occurence of the Riedel peak
at E,=1» This peak is due to the singular behavior of the
superconducting density of states at E=A. The gross features
of I; are common to the three cases (the solid curves 4 and B
and the dotted curve). However, for a given E,’ the singularity-
enhanced density of states leads to the appreciable enhancement
of I, similarly to the case of I,p.

Our next task is to investigate the influence of the singularity-
enhanced density of states on the isotope effect. The BCS gap
equation is given by

A(k) =—XrVir A (k)

2E (k)
where E() =[(E() —Er)*+A(k)*]*/* with the single-particle
energy E(k) and the Fermi energy Er. The critical temperature

tan A[E (k) /2ks T 4.7
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Fig. 6. The contribution of the E,-band to the Cooper pair’s phase
cohercent current Iy defined by (4.3). Jr= (eRw/24)Is
and Ey,=eV/2A. The parameter values for the solid curves
A and B are the same as those employed in Fig. 5. The
dotted curve corresponds to the flat E,-kand case, i.e.
Dy (E)=1-W,.

T¢ can be determined from the condition that (4.7) has a non-
trival solution in the limit A — 0. We assume that the attractive
pairing interaction is approximated by the s-wave potential, i.e.
Vie=—V for —Ep<E,(k), E.(k) <Epand Vi,,=0 for otherwise,
where Ep is the Debye cutoff energy. Then, for the momentum-
independent energy gap A we have the following well-known
formula,

_+_(ED D(E) _
v j A E g tan h[| E~Er | /2k5 T¢] 4.8)

where D(E) represents the density of states. Since we are
interested in the singular behavior of D, it is inadequate for our
purpose to replace D by a flat density of states. The Ep-depen-
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Fig. 7. The variation of L (defided by (4.9)) with the Fermi energy.
The solid curve A represents the contrribution of the E,-
band (the parameter values are the as those employed in
Fig. 3), and the curve B gives the modification of A due
to the interlayer transfer (f,=10-2f). The dotted curve
represents the simultaneous contributions of the E;- and
E,-bands, for the vanishing AE (defined in Fig. 4)

denbe of T¢ can be approximately written as

Jde=const. X Ept-L 4.9
with an adequately chosen value of L. The above relation is
equivalent to

L=1—0dlog T¢/dlog Ep (4.10)

In a phonon-mediated pairing mechanism, Ep is proportional to

M-/, where M is the average mass of the constituent atoms.
Thus, L represents the deviation of the isotope effect from the
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ideal case (L=0). The calculated variation of L with the Fermi
energy is illustrated in Fig. 7, where we have put E=4x10-%4
(fla=2) and W,=0.2fs. The solid curve A represents the contribu-
tion of the E;-band and the curve B the modification of the curve
A due to the interlayer transfer (£,=10-%4,). Both curves indicate
that the sharp peak structure at the bottom of the E,-band
cotribute to enhance the value of L, i.e. the suppression of the
isotope effect. In the O-hole dominant model, we have seen that
when the Fermi energy is located near the upper edge of the
lower subband (Fig. 3), the maximum of L is estimated to be
Lmax~0.75. In the present model, the contribution of the E,-band
leads to Lmax~0.6, which is smaller than that in the O-hole
dominant model. Such a difference comes from the difference of
the shape of the density of states between the two models. In
02, we have pointed out that for a set of adequate parameter
values, the logarithmic van Hove singularity in the E,-band
comes very closely to the singularity at the bottom of the E,-
band, When the distance between the two singularities is of the
order of Ep, the simultaneous contributions of these singularities
are exdected. The dotted curve in Fig. 7 represents the result
for D= D,+ D, with the above two singularities located at the same
point. In this special case we have Lpyax~0.7, which is comparable
with that in the O-hole dominant model.

§5. Concluding remarks

In this paper, we have investigated the hole states in the Cu-
and O-hole mixing model showing the asymmetry with respect
to the x- and y-directions. By explicit treatment of the Cu-holes,
some informations about the mixing effect of the Cy- and O-
holes have been obtained, the informations which cannot be
derived in the O-hole dominant model employed in the preceding
paper (I).

As shown in the above discussion, the mixing of the Cu- and
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O-hole states gives different types of singularities and different
shnpe of the density of states from those in the O-hole dominant
model. In the Cu- and O-hole mixing model, the bond asym-
metry leads to the splitting of the hole band into three subbands
(E.<E,<E;). We have considered the case where the E;-band
is half-filled. Then the strong Coulomb repulsion at Cu-sites
induces a large energy gap between the occupied and unoccupied
E,-levels. For the sufficiently large gap, the additional holes are
captured by the E-7’-singularity at the bottom of the E,-band,
even when their concentration is extremely low. On the other
hand, in the O-hole dominant model the bond asymmetry leads
to the splitting of the O-band into the two subban ds;ni order to
realize the Fermi energy close to the band edge singularity,
cqmparatively high codcentration of the O-holes is required
(1.~0.5).

In the Cu- and O-hole mixing model, we have discussed how
the tunneling current (between the two superconductors separated
by a thin dielectric) is modified by the singularity enhanced
density of states. Numerical computations have been done for
two types of the tunneling currents, namely, the quasi-particle
current I, and the Cooper pair’s phase coherent current I.
When the Fermi energy is located near the bottom of the Es-
band, the appreciable enhancement of I,, is derived. However,
our calculation also indicates that derivative of I, with respect
to the applied voltage is rather suppressed by the singular
behavior of the density of states, D,. This is due to the rapid
decreasing of the unoccupied part of D,(E) with increasing E.
The Cooper pair’s current I; shows a characteristic peak structure
in the variation with the applied voltage. From numerical
analysis, we find that the gross feature of such a peak structure
is not so strongly affected by the singularity of D,, although the
value of I, itself is enhanced singularity.

We also have discussed the isotope effect modified by the
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singularity of the E,-band. The deviation of the isotope effect
from the ideal case is given by L (defined by (4.9)). The
conspicuous enhancement of L is derived for the Fermi energy
located near the bottom of the E,-band; the contribution of the
E;-band leads to the maximum value of L, Lmax~0.6, This value
is smaller than that in the O-hole dominant model (Lmxa~0.75).
As described in the preceding sections, such a difference of the
Lax-value is resulted from the difference of the state density-
shape between the two models. For a set of adequate paramter
values, there is a possibility that the logarithmic van Hove
singularity in the E,-band comes very closely to the bottom of
the E,-band. In such a special case, the simultaneous contribu-
tions of the singularities in the E;- and E,~bands leads to Lmax~
0.7, which is comparable with the result of the O-hole dominant
model.

The E,-band discussed above shows the conspicuous mass
anisotropy. For the parameter values employed in calculating
the solid curves in Fig. 5, the mass anisotropy of the E,-holes
near the Fermi surface is about my/mz 2-2.5. which is larger
than that estimated from the distorted vortex lattice (mentioned
in §1). For the same parameter values, the mass anisotropy of
the E,-band is about m,/m,; 1.05-1.1. Thus, averaging of the
effective mass over the EF;- and E,~-bands may tends to lead more
reasonable values of the mass anisotropy. As described above,
one of the characteristic features is the two dimensional property
of the supercurrent, the property that induces interesting be-
haviors of the photon-mediated interaction between localized
moments-'*-1® The detailed discussion will be discussed in a
separate paper.
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